購物比價 | 找書網 | 找車網 |
FindBook |
有 1 項符合
NANOSCALE SCIENCE AND TECHNOLOGY的圖書 |
![]() |
NANOSCALE SCIENCE AND TECHNOLOGY 作者:KELSALL 出版社:JOHN WILEY & SONS,LTD 出版日期:2005-01-01 |
圖書館借閱 |
國家圖書館 | 全國圖書書目資訊網 | 國立公共資訊圖書館 | 電子書服務平台 | MetaCat 跨館整合查詢 |
臺北市立圖書館 | 新北市立圖書館 | 基隆市公共圖書館 | 桃園市立圖書館 | 新竹縣公共圖書館 |
苗栗縣立圖書館 | 臺中市立圖書館 | 彰化縣公共圖書館 | 南投縣文化局 | 雲林縣公共圖書館 |
嘉義縣圖書館 | 臺南市立圖書館 | 高雄市立圖書館 | 屏東縣公共圖書館 | 宜蘭縣公共圖書館 |
花蓮縣文化局 | 臺東縣文化處 |
|
Nanotechnology is a vital new area of research and development addressing the control, modification and fabrication of materials, structures and devices with nanometre precision and the synthesis of such structures into systems of micro- and macroscopic dimensions. Future applications of nanoscale science and technology include motors smaller than the diameter of a human hair and single-celled organisms programmed to fabricate materials with nanometer precision.
Miniaturisation has revolutionised the semiconductor industry by making possible inexpensive integrated electronic circuits comprised of devices and wires with sub-micrometer dimensions. These integrated circuits are now ubiquitous, controlling everything from cars to toasters. The next level of miniaturisation, beyond sub-micrometer dimensions into nanoscale dimensions (invisible to the unaided human eye) is a booming area of research and development. This is a very hot area of research with large amounts of venture capital and government funding being invested worldwide, as such Nanoscale Science and Technology has a broad appeal based upon an interdisciplinary approach, covering aspects of physics, chemistry, biology, materials science and electronic engineering. Kelsall et al present a coherent approach to nanoscale sciences, which will be invaluable to graduate level students and researchers and practising engineers and product designers.
"…a refreshing work, a very readable introduction to nanotechnology…" (CHOICE, February 2006 )
“ …the book reads well (and) abounds with instructive diagrams …” (Chemistry World, July 2005)
List of contributors.
Preface.
Chapter authors.
1 Generic methodologies for nanotechnology: classification and fabrication.
1.1 Introduction and classification.
1.2 Summary of the electronic properties of atoms and solids.
1.3 Effects of the nanometre length scale.
1.4 Fabrication methods.
1.5 Preparation, safety and storage issues.
Bibliography.
2 Generic methodologies for nanotechnology: characterization.
2.1 General classification of characterization methods.
2.2 Microscopy techniques.
2.3 Electron microscopy.
2.4 Field ion microscopy.
2.5 Scanning probe techniques.
2.6 Diffraction techniques.
2.7 Spectroscopy techniques.
2.8 Surface analysis and depth profiling.
2.9 Summary of techniques for property measurement.
Bibliography.
3 Inorganic semiconductor nanostructures.
3.1 Introduction.
3.2 Overview of relevant semiconductor physics.
3.3 Quantum confinement in semiconductor nanostructures.
3.4 The electronic density of states.
3.5 Fabrication techniques.
3.6 Physical processes in semiconductor nanostructures.
3.7 The characterisation of semiconductor nanostructures.
3.8 Applications of semiconductor nanostructures.
3.9 Summary and outlook.
Bibliography.
4 Nanomagnetic materials and devices.
4.1 Magnetism.
4.2 Nanomagnetic materials.
4.3 Magnetoresistance.
4.4 Probing nanomagnetic materials.
4.5 Nanomagnetism in technology.
4.6 The challenges facing nanomagnetism.
Bibliography.
5 Processing and properties of inorganic nanomaterials.
5.1 Introduction.
5.2 The thermodynamics and kinetics of phase transformations.
5.3 Synthesis methods.
5.4 Structure.
5.5 Microstructural stability.
5.6 Powder consolidation.
5.7 Mechanical properties.
5.8 Ferromagnetic properties.
5.9 Catalytic properties.
5.10 Present and potential applications for nanomaterials.
Bibliography.
6 Electronic and electro-optic molecular materials and devices.
6.1 Concepts and materials.
6.2 Applications and devices.
6.3 Carbon nanotubes.
Appendix: Reference table of organic semiconductors.
Bibliography.
7 Self-assembling nanostructured molecular materials and devices.
7.1 Introduction.
7.2 Building blocks.
7.3 Principles of self-assembly.
7.4 Self-assembly methods to prepare and pattern nanoparticles.
7.5 Templated nanostructures.
7.6 Liquid crystal mesophases.
7.7 Summary and outlook.
Bibliography.
8 Macromolecules at interfaces and structured organic films.
8.1 Macromolecules at interfaces.
8.2 The principles of interface science.
8.3 The analysis of wet interfaces.
8.4 Modifying interfaces.
8.5 Making thin organic films.
8.6 Surface effects on phase separation.
8.7 Nanopatterning surfaces by self-assembly.
8.8 Practical nanoscale devices exploiting macromolecules at interfaces.
Bibliography.
9 Bionanotechnology.
9.1 New tools for investigating biological systems.
9.2 Biomimetic nanotechnology.
9.3 Conclusions.
Bibliography.
Index.
|