購物比價 | 找書網 | 找車網 |
FindBook |
有 2 項符合
SYSTEM THEORY AND PRACTICAL APPLICATIONS OF BIOMEDICAL SIGNALS的圖書 |
SYSTEM THEORY AND PRACTICAL APPLICATIONS OF BIOMEDICAL SIGNALS 出版社:全華 |
圖書館借閱 |
國家圖書館 | 全國圖書書目資訊網 | 國立公共資訊圖書館 | 電子書服務平台 | MetaCat 跨館整合查詢 |
臺北市立圖書館 | 新北市立圖書館 | 基隆市公共圖書館 | 桃園市立圖書館 | 新竹縣公共圖書館 |
苗栗縣立圖書館 | 臺中市立圖書館 | 彰化縣公共圖書館 | 南投縣文化局 | 雲林縣公共圖書館 |
嘉義縣圖書館 | 臺南市立圖書館 | 高雄市立圖書館 | 屏東縣公共圖書館 | 宜蘭縣公共圖書館 |
花蓮縣文化局 | 臺東縣文化處 |
|
System theory is becoming increasingly important to medical applications. Yet, biomedical and digital signal processing researchers rarely have expertise in practical medical applications, and medical instrumentation designers usually are unfamiliar with system theory. System Theory and Practical Applications for Biomedical Signals bridges those gaps in a practical manner, showing how various aspects of system theory are put into practice by industry.
The chapters are intentionally organized in groups of two chapters, with the first chapter describing a system theory technology, and the second chapter describing an industrial application of this technology. Each theory chapter contains a general overview of a system theory technology, which is intended as background material for the application chapter. Each application chapter contains a history of a highlighted medical instrument, summary of appropriate physiology, discussion of the problem of interest and previous empirical solutions, and review of a solution that utilizes the theory in the previous chapter.
Biomedical and DSP academic researchers pursuing grants and industry funding will find its real-world approach extremely valuable. Its in-depth discussion of the theoretical issues will clarify for medical instrumentation managers how system theory can compensate for less-than-ideal sensors. With application MATLAB? exercises and suggestions for system theory course work included, the text also fills the need for detailed information for students or practicing engineers interested in instrument design. An Instructor Support FTP site is available from the Wiley editorial department: ftp://ftp.ieee.org/uploads/press/baura
GAIL D. BAURA received a BSEE from Loyola Marymount University in 1984 and an MSEE and MSBME from Drexel University in 1987. She received a PhD in Bioengineering from the University of Washington in 1993. Between these degrees, Dr. Baura worked as a loop transmission systems engineer at AT&T Bell Laboratories. Since graduation, she has served in a variety of research positions at IVAC Corporation, Cardiotronics Systems, Alaris Medical Systems, and VitalWave Corporation. Dr. Baura is currently Vice President of Research at CardioDynamics. Her research interests are the application of system theory to patient monitoring and insulin metabolism.
Preface.
Nomenclature.
I FILTERS.
1 System Theory and Frequency-Selective Filters.
2 Low Flow Rate Occlusion Detection Using Resistance Monitoring.
3 Adaptive Filters.
4 Improved Pulse Oximetry.
5 Time-Frequency and Time-Scale Analysis.
6 Improved Impedance Cardiography.
II MODELS FOR REAL TIME PROCESSING.
7 Linear System Identification.
8 External Defibrillation Waveform Optimization.
9 Nonlinear System Identification.
10 Improved Screening for Cervical Cancer.
11 Fuzzy Models.
12 Continuous Noninvasive Blood Pressure Monitoring: Proof of Concept.
III COMPARTMENTAL MODELS.
13 The Linear Compartmental Model.
14 Pharmacologic Stress Testing Using Closed-Loop Drug Delivery.
15 The Nonlinear Compartmental Model.
16 The Role of Nonlinear Compartmental Models in Development of Antiobesity Drugs.
IV SYSTEM THEORY IMPLEMENTATION.
17 Algorithm Implementation.
18 The Need for More System Theory in Low-Cost Medical Applications.
Glossary.
Index.
|