購物比價 | 找書網 | 找車網 |
FindBook |
有 2 項符合
INDEPENDENT COMPONENT ANALYSIS的圖書 |
圖書館借閱 |
國家圖書館 | 全國圖書書目資訊網 | 國立公共資訊圖書館 | 電子書服務平台 | MetaCat 跨館整合查詢 |
臺北市立圖書館 | 新北市立圖書館 | 基隆市公共圖書館 | 桃園市立圖書館 | 新竹縣公共圖書館 |
苗栗縣立圖書館 | 臺中市立圖書館 | 彰化縣公共圖書館 | 南投縣文化局 | 雲林縣公共圖書館 |
嘉義縣圖書館 | 臺南市立圖書館 | 高雄市立圖書館 | 屏東縣公共圖書館 | 宜蘭縣公共圖書館 |
花蓮縣文化局 | 臺東縣文化處 |
|
A comprehensive introduction to ICA for students and practitioners
Independent Component Analysis (ICA) is one of the most exciting new topics in fields such as neural networks, advanced statistics, and signal processing. This is the first book to provide a comprehensive introduction to this new technique complete with the fundamental mathematical background needed to understand and utilize it. It offers a general overview of the basics of ICA, important solutions and algorithms, and in-depth coverage of new applications in image processing, telecommunications, audio signal processing, and more.
Independent Component Analysis is divided into four sections that cover:
* General mathematical concepts utilized in the book
* The basic ICA model and its solution
* Various extensions of the basic ICA model
* Real-world applications for ICA models
Authors Hyvarinen, Karhunen, and Oja are well known for their contributions to the development of ICA and here cover all the relevant theory, new algorithms, and applications in various fields. Researchers, students, and practitioners from a variety of disciplines will find this accessible volume both helpful and informative.
AAPO HYV�RINEN, PhD, is Senior Fellow of the Academy of Finland and works at the Neural Networks Research Center of Helsinki University of Technology in Finland.
JUHA KARHUNEN and ERKKI OJA are professors at the Neural Networks Research Center of Helsinki University of Technology in Finland.
Preface.
Introduction.
MATHEMATICAL PRELIMINARIES.
Random Vectors and Independence.
Gradients and Optimization Methods.
Estimation Theory.
Information Theory.
Principal Component Analysis and Whitening.
BASIC INDEPENDENT COMPONENT ANALYSIS.
What is Independent Component Analysis?
ICA by Maximization of Nongaussianity.
ICA by Maximum Likelihood Estimation.
ICA by Minimization of Mutual Information.
ICA by Tensorial Methods.
ICA by Nonlinear Decorrelation and Nonlinear PCA.
Practical Considerations.
Overview and Comparison of Basic ICA Methods.
EXTENSIONS AND RELATED METHODS.
Noisy ICA.
ICA with Overcomplete Bases.
Nonlinear ICA.
Methods using Time Structure.
Convolutive Mixtures and Blind Deconvolution.
Other Extensions.
APPLICATIONS OF ICA.
Feature Extraction by ICA.
Brain Imaging Applications.
Telecommunications.
Other Applications.
References.
Index.
|