購物比價找書網找車網
FindBook  
 有 3 項符合

ARTIFICIAL INTELLIGENCE: A GUIDE TO INTELLIGENT SYSTEMS 4/E

的圖書
ARTIFICIAL INTELLIGENCE: A GUIDE TO INTELLIGENT SYSTEMS 4/E ARTIFICIAL INTELLIGENCE: A GUIDE TO INTELLIGENT SYSTEMS 4/E

作者:NEGNEVITSKY 
出版社:全華
出版日期:2025-01-20
圖書介紹 - 資料來源:博客來   評分:
圖書名稱:ARTIFICIAL INTELLIGENCE: A GUIDE TO INTELLIGENT SYSTEMS 4/E

內容簡介

  What are the principles behind intelligent systems? How are they built? What are intelligent systems useful for? How do we choose the right tool for the job? These questions are answered by Michael Negnevitsky’s Artificial Intelligence: A Guide to Intelligent Systems.

  Unlike many books on computer intelligence, which use complex computer science terminology and are crowded with complex matrix algebra and differential equations, this text demonstrates that the ideas behind intelligent systems are simple and straightforward. This text assumes little or no programming experience as it tackles topics like expert systems, fuzzy systems, artificial neural networks, evolutionary computation, knowledge engineering, and data mining.

本書特色

  1. 淺顯易懂:本書刻意避開艱深的電腦科學專業術語,不會充斥複雜的矩陣代數和微分方程。作者強調書中的概念其實相當簡單直觀,適合一般讀者閱讀。

  2. 無程式門檻:讀者不需要具備程式設計能力或深厚的微積分基礎就能理解內容。這本書是根據作者30年來授課經驗,針對非資訊背景的學生編寫而成。

  3. 實用導向:書中涵蓋專家系統、模糊系統、類神經網路、深度學習等主題,並說明如何選擇合適的工具來解決實際問題。特別適合想要運用AI解決實務問題的讀者。

  4. 跨領域應用:本書的目標讀者包含工程師、科學家、企業經理人、醫生、律師等各行各業的專業人士,特別適合那些想用非傳統方法解決問題的人。

  5. 與時俱進:書中介紹最新的AI工具和技術,包括MATLAB工具箱(模糊邏輯、類神經網路、全域最佳化、深度學習)以及ChatGPT等。雖然書中會展示這些工具的使用,但內容並不綁定於特定工具,讀者可以靈活運用不同的工具來實作。 
 

作者介紹

作者簡介

NEGNEVITSKY


  Dr Michael Negnevitsky is a Professor in Electrical Engineering and Computer Science at the University of Tasmania, Australia. This text has been developed from his lectures to undergraduates. Educated as an electrical engineer, Dr Negnevitsky’s many interests include artificial intelligence and soft computing. His research involves the development and application of intelligent systems in electrical engineering, process control, and environmental engineering. He has authored and co-authored over 300 research publications including numerous journal articles, four patents for inventions, and two books. 
 

目錄

1. Introduction to Intelligent Systems
 1.1 Intelligent Machines, or What Machines Can Do
 1.2 The History of Artificial Intelligence, or From the ‘Dark Ages’ to Knowledge-based Systems
 1.3 Generative AI
 1.4 Summary
 Questions for Review
 References

2. Expert Systems
 2.1 Introduction, or Knowledge Representation Using Rules
 2.2 The Main Players in the Expert System Development Team
 2.3 Structure of a Rule-based Expert System
 2.4 Fundamental characteristics of an expert system
 2.5 Forward Chaining and Backward Chaining Inference Techniques
 2.6 MEDIA ADVISOR: A Demonstration Rule-based Expert System
 2.7 Conflict Resolution
 2.8 Uncertainty Management in Rule-based Expert Systems
 2.9 Advantages and Disadvantages of Rule-based Expert systems
 2.10 Summary
 Questions for Review
 References

3. Fuzzy Systems
 3.1 Introduction, or What Is Fuzzy Thinking?
 3.2 Fuzzy Sets
 3.3 Linguistic Variables and Hedges
 3.4 Operations of Fuzzy Sets
 3.6 Fuzzy Inference
 3.7 Building a Fuzzy Expert System
 3.8 Summary
 Questions for Review
 References

4. Frame-based Systems and Semantic Networks
 4.1 Introduction, or What Is a Frame?
 4.2 Frames as a Knowledge Representation Technique
 4.3 Inheritance in Frame-based Systems
 4.4 Methods and Demons
 4.5 Interaction of Frames and Rules
 4.6 Buy Smart: A Frame-based Expert System
 4.7 The Web of Data
 4.8 RDF – Resource Description Framework and RDF Triples
 4.9 Turtle, RDF Schema and OWL
 4.10 Querying the Semantic Web with SPARQL
 4.11 Summary
 Questions for Review
 References

5. Artificial Neural Networks
 5.1 Introduction, or How the Brain Works
 5.2 The Neuron as a Simple Computing Element
 5.3 The Perceptron
 5.4 Multilayer Neural Networks
 5.5 Accelerated Learning in Multilayer Neural Networks
 5.6 The Hopfield Network
 5.7 Bidirectional Associative Memory
 5.8 Self-organising Neural Networks
 5.9 Reinforcement Learning
 5.10 Summary
 Questions for Review
 References

6. Deep Learning and Convolutional Neural Networks
 6.1 Introduction, or How “Deep” Is a Deep Neural Network?
 6.2 Image Recognition or How Machines See the World
 6.3 Convolution in Machine Learning
 6.4 Activation Functions in Deep Neural Networks
 6.5 Convolutional Neural Networks
 6.6 Back-propagation Learning in Convolutional Networks
 6.7 Batch Normalisation
 6.8 Summary
 Questions for Review
 References

7. Evolutionary Computation
 7.1 Introduction, or Can Evolution Be Intelligent?
 7.2 Simulation of Natural Evolution
 7.3 Genetic Algorithms
 7.4 Why Genetic Algorithms Work
 7.5 Maintenance Scheduling with Genetic Algorithms
 7.6 Genetic Programming
 7.7 Evolution Strategies
 7.8 Ant Colony Optimisation
 7.9 Particle Swarm Optimisation
 7.10 Summary
 Questions for Review
 References

8. Hybrid Intelligent Systems
 8.1 Introduction, or How to Combine German Mechanics with Italian Love
 8.2 Neural Expert Systems
 8.3 Neuro-Fuzzy Systems
 8.4 ANFIS: Adaptive Neuro-Fuzzy Inference System
 8.5 Evolutionary Neural Networks
 8.6 Fuzzy Evolutionary Systems
 8.7 Summary
 Questions for Review
 References

9. Knowledge Engineering
 9.1 Introduction, or What Is Knowledge Engineering?
 9.2 Will an Expert System Work for My Problem?
 9.3 Will a Fuzzy Expert System Work for My Problem?
 9.4 Will a Neural Network Work for My Problem?
 9.5 Will a Deep Neural Network Work for My Problem?
 9.6 Will Genetic Algorithms Work for My Problem?
 9.7 Will Particle Swarm Optimisation Work for My Problem?
 9.8 Will a Hybrid Intelligent System Work for My Problem?
 9.9 Summary
 Questions for Review
 References

10. Data Mining and Knowledge Discovery
 10.1 Introduction, or What Is Data Mining?
 10.2 Statistical Methods and Data Visualisation
 10.3 Principal Components Analysis
 10.4 Relational Databases and Database Queries
 10.5 The Data Warehouse and Multidimensional Data Analysis
 10.6 Decision Trees
 10.7 Association Rules and Market Basket Analysis
 10.8 Summary
 Questions for Review
 References

Glossary

Index
 

詳細資料

  • ISBN:9781292730851
  • 叢書系列:大學資訊
  • 規格:平裝 / 600頁 / 16.8 x 22.8 cm / 普通級 / 單色印刷 / 四版
  • 出版地:台灣
贊助商廣告
 
金石堂 - 今日66折
STEM的一天套書:科學、科技、工程、數學【配合108課綱,跨領域學習,培養自然科學和數理素養】
作者:安魯尼、南西迪克曼
出版社:五南圖書出版股份有限公司
出版日期:2020-05-28
66折: $ 845 
金石堂 - 今日66折
饕餮記【第二部】【上下】套書不分售
作者:殷羽
出版社:英屬維京群島商高寶國際有限公司
出版日期:2022-09-14
66折: $ 422 
金石堂 - 今日66折
好戲開鑼:進入表演藝術的世界
作者:雷曉青
出版社:五南圖書出版股份有限公司
出版日期:2019-01-28
66折: $ 165 
金石堂 - 今日66折
神奇之道有聲書第 1 輯
作者:許添盛
出版社:賽斯文化
出版日期:2018-01-01
66折: $ 660 
 
金石堂 - 暢銷排行榜
16647(1)
作者:小河少年Kawa
出版社:春光出版股份有限公司
出版日期:2025-02-13
$ 300 
Taaze 讀冊生活 - 暢銷排行榜
SEXY BODY誘惑誌 2月號/2025 第95期(兩款封面隨機出貨)
出版社:曖維多媒體廣告行銷股份有限公司
出版日期:2025-02-15
$ 206 
博客來 - 暢銷排行榜
失控的焦慮世代:手機餵養的世代,如何面對心理疾病的瘟疫
作者:強納森.海德特 (Jonathan Haidt)
出版社:網路與書出版
出版日期:2024-11-29
$ 379 
博客來 - 暢銷排行榜
世界上最透明的故事(日本出版界話題作,只有紙本書可以體驗的感動)
作者:杉井光
出版社:皇冠
出版日期:2024-09-30
$ 284 
 
博客來 - 新書排行榜
光逝去的夏天 (5)
出版日期:2025-02-13
$ 119 
金石堂 - 新書排行榜
夢想♡成真 無修正
作者:武田弘光
出版社:未來數位有限公司
出版日期:2025-01-22
$ 261 
金石堂 - 新書排行榜
藥師少女的獨語 14
作者:ねこクラゲ
出版社:東立出版社
出版日期:2025-02-28
$ 119 
金石堂 - 新書排行榜
肌肉魔法使 MASHLE 14
作者:甲本一
出版社:東立出版社
出版日期:2025-03-31
$ 98 
 

©2025 FindBook.com.tw -  購物比價  找書網  找車網  服務條款  隱私權政策