購物比價 | 找書網 | 找車網 |
FindBook |
有 1 項符合
Statistical Regression and Classification的圖書 |
Statistical Regression and Classification 作者:Norman Matloff 出版社:CRC Press 出版日期:2017-09-19 語言:英文 |
圖書館借閱 |
國家圖書館 | 全國圖書書目資訊網 | 國立公共資訊圖書館 | 電子書服務平台 | MetaCat 跨館整合查詢 |
臺北市立圖書館 | 新北市立圖書館 | 基隆市公共圖書館 | 桃園市立圖書館 | 新竹縣公共圖書館 |
苗栗縣立圖書館 | 臺中市立圖書館 | 彰化縣公共圖書館 | 南投縣文化局 | 雲林縣公共圖書館 |
嘉義縣圖書館 | 臺南市立圖書館 | 高雄市立圖書館 | 屏東縣公共圖書館 | 宜蘭縣公共圖書館 |
花蓮縣文化局 | 臺東縣文化處 |
|
Statistical Regression and Classification: From Linear Models to Machine Learning takes an innovative look at the traditional statistical regression course, presenting a contemporary treatment in line with today's applications and users. The text takes a modern look at regression:
* A thorough treatment of classical linear and generalized linear models, supplemented with introductory material on machine learning methods.
* Since classification is the focus of many contemporary applications, the book covers this topic in detail, especially the multiclass case.
* In view of the voluminous nature of many modern datasets, there is a chapter on Big Data.
* Has special Mathematical and Computational Complements sections at ends of chapters, and exercises are partitioned into Data, Math and Complements problems.
* Instructors can tailor coverage for specific audiences such as majors in Statistics, Computer Science, or Economics.
* More than 75 examples using real data.
The book treats classical regression methods in an innovative, contemporary manner. Though some statistical learning methods are introduced, the primary methodology used is linear and generalized linear parametric models, covering both the Description and Prediction goals of regression methods. The author is just as interested in Description applications of regression, such as measuring the gender wage gap in Silicon Valley, as in forecasting tomorrow's demand for bike rentals. An entire chapter is devoted to measuring such effects, including discussion of Simpson's Paradox, multiple inference, and causation issues. Similarly, there is an entire chapter of parametric model fit, making use of both residual analysis and assessment via nonparametric analysis.
Norman Matloff is a professor of computer science at the University of California, Davis, and was a founder of the Statistics Department at that institution. His current research focus is on recommender systems, and applications of regression methods to small area estimation and bias reduction in observational studies. He is on the editorial boards of the Journal of Statistical Computation and the R Journal. An award-winning teacher, he is the author of The Art of R Programming and Parallel Computation in Data Science: With Examples in R, C++ and CUDA.
|