購物比價找書網找車網
FindBook  
 有 1 項符合

Math and Architectures of Deep Learning

的圖書
Math and Architectures of Deep Learning Math and Architectures of Deep Learning

作者:Chaudhury 
出版社:Manning Publications
出版日期:2024-03-26
語言:英文   規格:平裝 / 450頁 / 23.5 x 18.75 x 2.87 cm / 普通級/ 初版
圖書選購
型式價格供應商所屬目錄
 
$ 3849
博客來 博客來
人工智慧
圖書介紹 - 資料來源:博客來   評分:
圖書名稱:Math and Architectures of Deep Learning

內容簡介

Shine a spotlight into the deep learning "black box". This comprehensive and detailed guide reveals the mathematical and architectural concepts behind deep learning models, so you can customize, maintain, and explain them more effectively.

Inside Math and Architectures of Deep Learning you will find:

  • Math, theory, and programming principles side by side
  • Linear algebra, vector calculus and multivariate statistics for deep learning
  • The structure of neural networks
  • Implementing deep learning architectures with Python and PyTorch
  • Troubleshooting underperforming models
  • Working code samples in downloadable Jupyter notebooks

The mathematical paradigms behind deep learning models typically begin as hard-to-read academic papers that leave engineers in the dark about how those models actually function. Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementations in Python and PyTorch. Written by deep learning expert Krishnendu Chaudhury, you’ll peer inside the "black box" to understand how your code is working, and learn to comprehend cutting-edge research you can turn into practical applications.

Foreword by Prith Banerjee.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology

Discover what’s going on inside the black box! To work with deep learning you’ll have to choose the right model, train it, preprocess your data, evaluate performance and accuracy, and deal with uncertainty and variability in the outputs of a deployed solution. This book takes you systematically through the core mathematical concepts you’ll need as a working data scientist: vector calculus, linear algebra, and Bayesian inference, all from a deep learning perspective.

About the book

Math and Architectures of Deep Learning teaches the math, theory, and programming principles of deep learning models laid out side by side, and then puts them into practice with well-annotated Python code. You’ll progress from algebra, calculus, and statistics all the way to state-of-the-art DL architectures taken from the latest research.

What’s inside

  • The core design principles of neural networks
  • Implementing deep learning with Python and PyTorch
  • Regularizing and optimizing underperforming models

About the reader

Readers need to know Python and the basics of algebra and calculus.

About the author

Krishnendu Chaudhury is co-founder and CTO of the AI startup Drishti Technologies. He previously spent a decade each at Google and Adobe.

Table of Contents

1 An overview of machine learning and deep learning
2 Vectors, matrices, and tensors in machine learning
3 Classifiers and vector calculus
4 Linear algebraic tools in machine learning
5 Probability distributions in machine learning
6 Bayesian tools for machine learning
7 Function approximation: How neural networks model the world
8 Training neural networks: Forward propagation and backpropagation
9 Loss, optimization, and regularization
10 Convolutions in neural networks
11 Neural networks for image classification and object detection
12 Manifolds, homeomorphism, and neural networks
13 Fully Bayes model parameter estimation
14 Latent space and generative modeling, autoencoders, and variational autoencoders
A Appendix

 

作者簡介

Krishnendu Chaudhury is a deep learning and computer vision expert with decade-long stints at both Google and Adobe Systems. He is presently CTO and co-founder of Drishti Technologies. He has a PhD in computer science from the University of Kentucky at Lexington.

 

詳細資料

  • ISBN:9781617296482
  • 規格:平裝 / 450頁 / 23.5 x 18.75 x 2.87 cm / 普通級 / 初版
  • 出版地:美國
贊助商廣告
 
金石堂 - 今日66折
靈界的訊息有聲書第 1 輯(新版)
作者:許添盛
出版社:賽斯文化
出版日期:2017-05-01
66折: $ 660 
金石堂 - 今日66折
早期課1有聲書第3輯
作者:許添盛
出版社:賽斯文化
出版日期:2020-12-11
66折: $ 660 
金石堂 - 今日66折
寫下歷史的世界500步道
作者:莎拉.貝克斯特
出版社:積木文化
出版日期:2017-08-05
66折: $ 495 
金石堂 - 今日66折
靈界的訊息有聲書第5輯
作者:許添盛
出版社:賽斯文化
出版日期:2014-01-10
66折: $ 581 
 
金石堂 - 暢銷排行榜
治癒悖論 deeper (首刷限定版)(上+下)
作者:昼寝シアン
出版社:東立出版社
出版日期:2025-02-05
$ 400 
博客來 - 暢銷排行榜
別對每件事都有反應【2025限量暢銷特典版】:淡泊一點也無妨,活出快意人生的99個禪練習!
作者:枡野俊明
出版社:悅知文化
出版日期:2024-12-18
$ 260 
Taaze 讀冊生活 - 暢銷排行榜
情緒掌控,決定你的人生格局:別讓1%的情緒失控,毀了你99%的努力
作者:宋曉東
出版社:英屬維京群島商高寶國際有限公司台灣分公司
出版日期:2021-03-17
$ 260 
博客來 - 暢銷排行榜
笑中帶淚的老後日常套書:《銀髮川柳1~3》(附贈「人生滋味」插畫書籤、「一起變老吧」新春賀年狀)
作者:日本公益社團法人全國自費老人之家協會 (公益社団法人全国有料老人ホーム協会, ポプラ社編集部)
出版社:三采
出版日期:2024-12-27
$ 562 
 
博客來 - 新書排行榜
我內心的糟糕念頭 10 (首刷限定版)
作者:桜井紀雄
出版社:東立
出版日期:2025-02-06
$ 297 
Taaze 讀冊生活 - 新書排行榜
林黛小姐
作者:姜楠
出版社:今古傳奇(滾石移動)
出版日期:2025-01-17
$ 180 
博客來 - 新書排行榜
怪獸8號(13)
出版日期:2025-02-07
$ 86 
金石堂 - 新書排行榜
戀染龍雨衣(全)限定版
作者:朔ヒロ
出版社:青文出版社股份有限公司
出版日期:2025-01-03
$ 171 
 

©2025 FindBook.com.tw -  購物比價  找書網  找車網  服務條款  隱私權政策