購物比價找書網找車網
FindBook  
 有 1 項符合

Math and Architectures of Deep Learning

的圖書
Math and Architectures of Deep Learning Math and Architectures of Deep Learning

作者:Chaudhury 
出版社:Manning Publications
出版日期:2024-03-26
語言:英文   規格:平裝 / 450頁 / 23.5 x 18.75 x 2.87 cm / 普通級/ 初版
圖書選購
型式價格供應商所屬目錄
 
$ 3849
博客來 博客來
人工智慧
圖書介紹 - 資料來源:博客來   評分:
圖書名稱:Math and Architectures of Deep Learning

內容簡介

Shine a spotlight into the deep learning "black box". This comprehensive and detailed guide reveals the mathematical and architectural concepts behind deep learning models, so you can customize, maintain, and explain them more effectively.

Inside Math and Architectures of Deep Learning you will find:

  • Math, theory, and programming principles side by side
  • Linear algebra, vector calculus and multivariate statistics for deep learning
  • The structure of neural networks
  • Implementing deep learning architectures with Python and PyTorch
  • Troubleshooting underperforming models
  • Working code samples in downloadable Jupyter notebooks

The mathematical paradigms behind deep learning models typically begin as hard-to-read academic papers that leave engineers in the dark about how those models actually function. Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementations in Python and PyTorch. Written by deep learning expert Krishnendu Chaudhury, you’ll peer inside the "black box" to understand how your code is working, and learn to comprehend cutting-edge research you can turn into practical applications.

Foreword by Prith Banerjee.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology

Discover what’s going on inside the black box! To work with deep learning you’ll have to choose the right model, train it, preprocess your data, evaluate performance and accuracy, and deal with uncertainty and variability in the outputs of a deployed solution. This book takes you systematically through the core mathematical concepts you’ll need as a working data scientist: vector calculus, linear algebra, and Bayesian inference, all from a deep learning perspective.

About the book

Math and Architectures of Deep Learning teaches the math, theory, and programming principles of deep learning models laid out side by side, and then puts them into practice with well-annotated Python code. You’ll progress from algebra, calculus, and statistics all the way to state-of-the-art DL architectures taken from the latest research.

What’s inside

  • The core design principles of neural networks
  • Implementing deep learning with Python and PyTorch
  • Regularizing and optimizing underperforming models

About the reader

Readers need to know Python and the basics of algebra and calculus.

About the author

Krishnendu Chaudhury is co-founder and CTO of the AI startup Drishti Technologies. He previously spent a decade each at Google and Adobe.

Table of Contents

1 An overview of machine learning and deep learning
2 Vectors, matrices, and tensors in machine learning
3 Classifiers and vector calculus
4 Linear algebraic tools in machine learning
5 Probability distributions in machine learning
6 Bayesian tools for machine learning
7 Function approximation: How neural networks model the world
8 Training neural networks: Forward propagation and backpropagation
9 Loss, optimization, and regularization
10 Convolutions in neural networks
11 Neural networks for image classification and object detection
12 Manifolds, homeomorphism, and neural networks
13 Fully Bayes model parameter estimation
14 Latent space and generative modeling, autoencoders, and variational autoencoders
A Appendix

 

作者簡介

Krishnendu Chaudhury is a deep learning and computer vision expert with decade-long stints at both Google and Adobe Systems. He is presently CTO and co-founder of Drishti Technologies. He has a PhD in computer science from the University of Kentucky at Lexington.

 

詳細資料

  • ISBN:9781617296482
  • 規格:平裝 / 450頁 / 23.5 x 18.75 x 2.87 cm / 普通級 / 初版
  • 出版地:美國
贊助商廣告
 
金石堂 - 今日66折
療癒薰香使用手冊:身心放鬆X淨化空間X香氛裝飾,第一本從種類、配方到應用的香品圖解事典!
作者:椎名まさえ
出版社:蘋果屋出版社
出版日期:2024-06-27
66折: $ 251 
金石堂 - 今日66折
新世代新人種!手機智人Phono-Sapiens:你準備好成為消費者至上時代被需要的人才並掌握必備的商業戰略了嗎?
作者:崔在鵬
出版社:財經傳訊
出版日期:2020-07-16
66折: $ 277 
金石堂 - 今日66折
正是喝茶時:跟著世界茶藝師一起選茶x泡茶x品茶,順應四季節氣享茶,喝出生活中的好茶真滋味
作者:鄭多亨
出版社:台灣廣廈有聲圖書有限公司
出版日期:2023-05-18
66折: $ 395 
金石堂 - 今日66折
小學生的統計圖表活用術(全套4冊):叫我資料小達人1.比較數量大小、2.預測數值變化、3.分析圖表組合、4.驗證預測結果
作者:今野紀雄(監修)
出版社:小熊出版社
出版日期:2022-11-09
66折: $ 1003 
 
Taaze 讀冊生活 - 暢銷排行榜
別對每件事都有反應【2025限量暢銷特典版】:淡泊一點也無妨,活出快意人生的99個禪練習!
作者:枡野俊明
出版社:悅知文化
出版日期:2024-12-18
$ 260 
博客來 - 暢銷排行榜
渣男椎名學長與瘋男佐佐木學弟 (1)
作者:伊咲ネコオ
出版社:台灣角川
出版日期:2025-03-27
$ 170 
金石堂 - 暢銷排行榜
SKIP. BEAT!華麗的挑戰 50
作者:仲村佳樹
出版社:東立出版社
出版日期:2025-03-27
$ 105 
 
Taaze 讀冊生活 - 新書排行榜
未來的戰鬥︰皮凱提與桑德爾對談平等與正義,揭露當今獨特又殘酷的不平等
作者:托瑪.皮凱提、邁可.桑德爾
出版社:天下雜誌股份有限公司
出版日期:2025-04-02
$ 315 
博客來 - 新書排行榜
養心2:泥魔妖的誘惑(首批附贈作者印簽金句扉頁及五悔角色卡)
作者:陳郁如
出版社:親子天下
出版日期:2025-03-27
$ 331 
Taaze 讀冊生活 - 新書排行榜
當我們寫作,我們寫的是什麼
作者:凌明玉
出版社:聯合文學出版社股份有限公司
出版日期:2025-03-24
$ 266 
金石堂 - 新書排行榜
第一次的人妻體驗【改版】 無修正
作者:篠塚裕志
出版社:未來數位有限公司
出版日期:2025-03-19
$ 277 
 

©2025 FindBook.com.tw -  購物比價  找書網  找車網  服務條款  隱私權政策