購物比價找書網找車網
FindBook  
 有 1 項符合

Unlocking Data with Generative AI and RAG: Enhance generative AI systems by integrating internal data with large language models using RAG

的圖書
Unlocking Data with Generative AI and RAG: Enhance generative AI systems by integrating internal data with large language models using RAG Unlocking Data with Generative AI and RAG: Enhance generative AI systems by integrating internal data with large language models using RAG

作者:Bourne 
出版社:Packt Publishing
出版日期:2024-09-27
語言:英文   規格:平裝 / 346頁 / 23.5 x 19.05 x 1.83 cm / 普通級/ 初版
圖書選購
型式價格供應商所屬目錄
 
$ 2474
博客來 博客來
人工智慧
圖書介紹 - 資料來源:博客來   評分:
圖書名稱:Unlocking Data with Generative AI and RAG: Enhance generative AI systems by integrating internal data with large language models using RAG

內容簡介

Leverage cutting-edge generative AI techniques such as RAG to realize the potential of your data and drive innovation as well as gain strategic advantage

Key Features:

- Optimize data retrieval and generation using vector databases

- Boost decision-making and automate workflows with AI agents

- Overcome common challenges in implementing real-world RAG systems

- Purchase of the print or Kindle book includes a free PDF eBook

Book Description:

Generative AI is helping organizations tap into their data in new ways, with retrieval-augmented generation (RAG) combining the strengths of large language models (LLMs) with internal data for more intelligent and relevant AI applications. The author harnesses his decade of ML experience in this book to equip you with the strategic insights and technical expertise needed when using RAG to drive transformative outcomes.

The book explores RAG’s role in enhancing organizational operations by blending theoretical foundations with practical techniques. You’ll work with detailed coding examples using tools such as LangChain and Chroma’s vector database to gain hands-on experience in integrating RAG into AI systems. The chapters contain real-world case studies and sample applications that highlight RAG’s diverse use cases, from search engines to chatbots. You’ll learn proven methods for managing vector databases, optimizing data retrieval, effective prompt engineering, and quantitatively evaluating performance. The book also takes you through advanced integrations of RAG with cutting-edge AI agents and emerging non-LLM technologies.

By the end of this book, you’ll be able to successfully deploy RAG in business settings, address common challenges, and push the boundaries of what’s possible with this revolutionary AI technique.

What You Will Learn:

- Understand RAG principles and their significance in generative AI

- Integrate LLMs with internal data for enhanced operations

- Master vectorization, vector databases, and vector search techniques

- Develop skills in prompt engineering specific to RAG and design for precise AI responses

- Familiarize yourself with AI agents’ roles in facilitating sophisticated RAG applications

- Overcome scalability, data quality, and integration issues

- Discover strategies for optimizing data retrieval and AI interpretability

Who this book is for:

This book is for AI researchers, data scientists, software developers, and business analysts looking to leverage RAG and generative AI to enhance data retrieval, improve AI accuracy, and drive innovation. It is particularly suited for anyone with a foundational understanding of AI who seeks practical, hands-on learning. The book offers real-world coding examples and strategies for implementing RAG effectively, making it accessible to both technical and non-technical audiences. A basic understanding of Python and Jupyter Notebooks is required.

Table of Contents

- What Is Retrieval-Augmented Generation (RAG)

- Code Lab - An Entire RAG Pipeline

- Practical Applications of RAG

- Components of a RAG System

- Managing Security in RAG Applications

- Interfacing with RAG and Gradio

- The Key Role Vectors and Vector Stores Play in RAG

- Similarity Searching with Vectors

- Evaluating RAG Quantitatively and with Visualizations

- Key RAG Components in LangChain

- Using LangChain to Get More from RAG

- Combining RAG with the Power of AI Agents and LangGraph

- Using Prompt Engineering to Improve RAG Efforts

- Advanced RAG-Related Techniques for Improving Results

 

詳細資料

  • ISBN:9781835887905
  • 規格:平裝 / 346頁 / 23.5 x 19.05 x 1.83 cm / 普通級 / 初版
  • 出版地:美國
贊助商廣告
 
金石堂 - 今日66折
小瓢蟲聽到大祕密:保衛母牛大作戰!【中英雙語繪本】
作者:朱莉亞.唐納森
出版社:采實文化事業股份有限公司
出版日期:2021-01-07
66折: $ 211 
金石堂 - 今日66折
實習神明手冊有聲書第 2 輯
作者:許添盛(醫師)
出版社:賽斯文化
出版日期:2021-01-08
66折: $ 660 
金石堂 - 今日66折
ABC懶人瘦身蔬果汁:蘋果.甜菜根.紅蘿蔔,3種食材×每天一杯,快速瘦肚、高效減脂,喝出紅潤好氣色!
作者:柳炳昱
出版社:采實文化事業股份有限公司
出版日期:2021-03-25
66折: $ 238 
金石堂 - 今日66折
四大文明神話套書(四冊):《美索不達米亞神話》、《埃及神話》、《印度神話》、《中國神話》
作者:席路德
出版社:漫遊者
出版日期:2023-08-14
66折: $ 950 
 
Taaze 讀冊生活 - 暢銷排行榜
我們的節氣 【畫給孩子的二十四節氣變化】
作者:洋洋兔編著
出版社:幼福文化事業股份有限公司
出版日期:2019-09-01
$ 157 
金石堂 - 暢銷排行榜
東京-臨界點- (首刷限定版)(全)
作者:ハル
出版社:東立出版社
出版日期:2025-01-22
$ 187 
博客來 - 暢銷排行榜
迷宮飯 世界導覽冒險者聖經 完全版(全)
出版日期:2025-01-22
$ 450 
博客來 - 暢銷排行榜
長期買進:財金教授周冠男的42堂自制力投資課
作者:周冠男
出版社:天下文化
出版日期:2024-07-31
$ 355 
 
金石堂 - 新書排行榜
九井諒子塗鴉集 白日夢時光(全)
作者:九井諒子
出版社:青文出版社股份有限公司
出版日期:2025-01-22
$ 435 
金石堂 - 新書排行榜
請解開故事謎底 04
作者:花於景(雷雷夥伴)
出版社:魔豆文化有限公司
出版日期:2025-02-05
$ 150 
金石堂 - 新書排行榜
東京-臨界點- (首刷限定版)(全)
作者:ハル
出版社:東立出版社
出版日期:2025-01-22
$ 187 
博客來 - 新書排行榜
SPY×FAMILY 間諜家家酒 14
出版日期:2025-02-04
$ 93 
 

©2025 FindBook.com.tw -  購物比價  找書網  找車網  服務條款  隱私權政策