購物比價找書網找車網
FindBook  
 有 1 項符合

Large Language Models: A Deep Dive: Bridging Theory and Practice

的圖書
Large Language Models: A Deep Dive: Bridging Theory and Practice Large Language Models: A Deep Dive: Bridging Theory and Practice

作者:Kamath 
出版社:Springer
出版日期:2024-08-21
語言:英文   規格:精裝 / 23.5 x 15.49 cm / 普通級/ 初版
圖書選購
型式價格供應商所屬目錄
 
$ 5099
博客來 博客來
數學
圖書介紹 - 資料來源:博客來   評分:
圖書名稱:Large Language Models: A Deep Dive: Bridging Theory and Practice

內容簡介

Large Language Models (LLMs) have emerged as a cornerstone technology, transforming how we interact with information and redefining the boundaries of artificial intelligence. LLMs offer an unprecedented ability to understand, generate, and interact with human language in an intuitive and insightful manner, leading to transformative applications across domains like content creation, chatbots, search engines, and research tools. While fascinating, the complex workings of LLMs--their intricate architecture, underlying algorithms, and ethical considerations--require thorough exploration, creating a need for a comprehensive book on this subject.

This book provides an authoritative exploration of the design, training, evolution, and application of LLMs. It begins with an overview of pre-trained language models and Transformer architectures, laying the groundwork for understanding prompt-based learning techniques. Next, it dives into methods for fine-tuning LLMs, integrating reinforcement learning for value alignment, and the convergence of LLMs with computer vision, robotics, and speech processing. The book strongly emphasizes practical applications, detailing real-world use cases such as conversational chatbots, retrieval-augmented generation (RAG), and code generation. These examples are carefully chosen to illustrate the diverse and impactful ways LLMs are being applied in various industries and scenarios.

Readers will gain insights into operationalizing and deploying LLMs, from implementing modern tools and libraries to addressing challenges like bias and ethical implications. The book also introduces the cutting-edge realm of multimodal LLMs that can process audio, images, video, and robotic inputs. With hands-on tutorials for applying LLMs to natural language tasks, this thorough guide equips readers with both theoretical knowledge and practical skills for leveraging the full potential of large language models.

This comprehensive resource is appropriate for a wide audience: students, researchers and academics in AI or NLP, practicing data scientists, and anyone looking to grasp the essence and intricacies of LLMs.

Key Features:

  • Over 100 techniques and state-of-the-art methods, including pre-training, prompt-based tuning, instruction tuning, parameter-efficient and compute-efficient fine-tuning, end-user prompt engineering, and building and optimizing Retrieval-Augmented Generation systems, along with strategies for aligning LLMs with human values using reinforcement learning
  • Over 200 datasets compiled in one place, covering everything from pre- training to multimodal tuning, providing a robust foundation for diverse LLM applications
  • Over 50 strategies to address key ethical issues such as hallucination, toxicity, bias, fairness, and privacy. Gain comprehensive methods for measuring, evaluating, and mitigating these challenges to ensure responsible LLM deployment
  • Over 200 benchmarks covering LLM performance across various tasks, ethical considerations, multimodal applications, and more than 50 evaluation metrics for the LLM lifecycle
  • Nine detailed tutorials that guide readers through pre-training, fine- tuning, alignment tuning, bias mitigation, multimodal training, and deploying large language models using tools and libraries compatible with Google Colab, ensuring practical application of theoretical concepts
  • Over 100 practical tips for data scientists and practitioners, offering implementation details, tricks, and tools to successfully navigate the LLM life- cycle and accomplish tasks efficiently

 

作者簡介

Uday Kamath has 25 years of experience in analytical development and a Ph.D. in scalable machine learning. His significant contributions span numerous journals, conferences, books, and patents. Notable books include Applied Causal Inference, Explainable Artificial Intelligence, Transformers for Machine Learning, Deep Learning for NLP and Speech Recognition, Mastering Java Machine Learning, and Machine Learning: End-to-End Guide for Java Developers. Currently serving as the Chief Analytics Officer for Smarsh, his role encompasses spearheading data science and research in communication AI. He is also an active member of the Board of Advisors for entities, including commercial companies like Falkonry and academic institutions such as the Center for Human-Machine Partnership at GMU.

Kevin Keenan, Ph.D has more than 15 years of experience in the application of statistics, data analytics, and machine learning to real-world data across academia, cybersecurity, and financial services. Within these domains, he has specialized in the rigorous application of the scientific method, especially within scrappy commercial environments, where data quality and completeness are never ideal but from which immense value and insight can still be derived. With 8+ years of experience using NLP to surface human-mediated corporate, legal, and regulatory risk from communications and deep packet network traffic data, Kevin has successfully delivered machine learning applied to unstructured data at huge scales. He is the author of four published scientific papers in the academic field of Evolutionary Genetics, with over 1,400 citations, and is the author and maintainer of the open-source "diveRsity" project for population genetics research in the R statistical programming language.

Sarah Sorenson has spent over 15 years working in the software industry. She is a polyglot programmer, having done full-stack development in Python, Java, C#, and JavaScript at various times. She has spent the past ten years building machine learning capabilities and putting them into operation, primarily in the financial services domain. She has extensive experience in the application of machine learning to fraud detection and, most recently, has specialized in the development and deployment of NLP models for regulatory compliance on large-scale communications data at some of the world’s top banks.

Garrett Somers has been doing data-intensive research for over 10 years. Trained as an astrophysicist, he began his career studying X-ray emissions from distant black holes, before authoring his dissertation on numerical models of the evolving structure, spin, and magnetic fields of stars. He is the first author of eight peer-reviewed astrophysics articles totaling over 400 citations and the contributing author of an additional twenty-seven (over 4,000 citations in total). In 2019, he began a career in data science, specializing in applications of natural language processing to behavioral analysis in large communication corpora.

 

詳細資料

  • ISBN:9783031656460
  • 規格:精裝 / 23.5 x 15.49 cm / 普通級 / 初版
  • 出版地:美國
贊助商廣告
 
金石堂 - 今日66折
法式甜點的設計:藍帶甜點師的職人配方&破框美學,35款集結色彩搭配、造型發想、味覺堆疊的美味解構
作者:郭恩慈EN
出版社:台灣廣廈有聲圖書有限公司
出版日期:2022-05-26
66折: $ 429 
金石堂 - 今日66折
職人級飲品設計入門:基底製作X獨創風味X吸睛裝飾X冷熱變化,韓國人氣咖啡廳都在用的手調飲指南
作者:金廷
出版社:台灣廣廈有聲圖書有限公司
出版日期:2024-04-18
66折: $ 317 
金石堂 - 今日66折
神要團聚。氣要寧靜:馬尼尼為2025月曆書
作者:馬尼尼為
出版社:斑馬線文庫有限公司
出版日期:2024-09-24
66折: $ 297 
 
Taaze 讀冊生活 - 暢銷排行榜
邏輯學入門:88個邏輯學常識,提升思辨能力,辨識思維謬誤,清晰思考,理性生活
作者:格桑
出版社:遠流出版事業股份有限公司
出版日期:2024-04-26
$ 268 
博客來 - 暢銷排行榜
我可能錯了:森林智者的最後一堂人生課
作者:比約恩.納提科.林德布勞 (Björn Natthiko Lindeblad, Caroline Bankler, Navid Modiri)
出版社:先覺
出版日期:2023-02-01
$ 355 
博客來 - 暢銷排行榜
你的人生,他們六個說了算!:決定你一生的六種物質
作者:大衛.JP.菲利浦斯
出版社:平安文化
出版日期:2024-12-30
$ 284 
Taaze 讀冊生活 - 暢銷排行榜
如是我聞:金剛經筆記
作者:蔣勳
出版社:遠流出版事業股份有限公司
出版日期:2025-03-27
$ 276 
 
金石堂 - 新書排行榜
愚者之夜(06)
作者:安田佳澄
出版社:尖端漫畫
出版日期:2025-04-09
$ 119 
Taaze 讀冊生活 - 新書排行榜
日式幸福餐桌:118道調理身體的飯糰與味噌湯(繁中暢銷版)
作者:藤井惠
出版社:布克文化
出版日期:2025-04-10
$ 380 
Taaze 讀冊生活 - 新書排行榜
台灣廟宇深度導覽圖錄
作者:康鍩錫
出版社:貓頭鷹出版
出版日期:2025-04-12
$ 441 
金石堂 - 新書排行榜
與變成異世界美少女的大叔一起冒險(10)
$ 111 
 

©2025 FindBook.com.tw -  購物比價  找書網  找車網  服務條款  隱私權政策