CH1 人工智慧概論
1-1 人工智慧的興起
1-2 機器學習(Machine Learning ,ML)概述
1-3 深度學習(Deep Learning ,DL)
1-4 人工智慧應用領域
CH2 Tensorflow環境安裝與介紹
2-1 Tensorflow 簡介
2-2 Keras 簡介
2-3 開發環境安裝
CH3 常用工具介紹
3-1 NumPy 介紹
3-2 Matplotlib 介紹
3-3 Pandas 介紹
CH4 張量的基礎與進階應用
4-1 張量(tensor)介紹
4-2 數據類型介紹
4-3 張量的各種運算
CH5 類神經網路
5-1 類神經網路(Neural Network, NN)簡介
5-2 激勵函數(Activation Function)介紹
5-3 神經網路(多層感知機 Multilayer perceptron, MLP)
5-4 網路參數的優化
5-5 神經網路訓練實例(MNIST 手寫數字辨識)
5-6 使用keras 模組實現神經網路訓練(Fashion MNIST 識別)
5-7 網路的保存與載入
CH6 神經網路的優化與調教
6-1 過擬合(overfitting)與欠擬合(underfitting)問題
6-2 數據集劃分
6-3 提前停止(Early stopping)
6-4 設定模型層數對
6-5 使用Dropout
6-6 使用正則化(regularization)
6-7 數據增強(Data Augmentation)
CH7 卷積神經網路
7-1 淺談卷積神經(Convolutional Neural Network)網路
7-2 卷積層(Convolution Layer)
7-3 池化層(Pooling Layer)
7-4 Flatten(展平)與Dense(全連接)層
7-5 卷積神經網路實作(LeNet-5 實作)
7-6 常見卷積神經網路(一)-AlexNet 網路
7-7 常見卷積神經網路(二)-VGG 網路
7-8 常見卷積神經網路(三)-GoogLeNet 網路
7-9 常見卷積神經網路(四)-ResNet 網路
7-10 常見卷積神經網路(五)-DenseNet 網路
CH8 循環神經網路
8-1 淺談循環神經網路
8-2 循環神經網路(Recurrent Neural Network)
8-3 循環神經網路(RNN)的梯度消失與爆炸
8-4 長短期記憶(Long Short-Term Memory, LSTM)
8-5 門控循環單元(Gate Recurrent Unit, GRU)