第1章 Weka的安裝與主要功能
1.1 何謂Weka
1.2 下載Weka與安裝
1.3 啟動Weka
1.4 Weka的主要功能
第2章 利用Excel與Weka的簡單操作─機器學習與決策樹
2.1 以Excel製作數據,以Weka計算
2.2 以Weka預測
2.3 預測結果的焦點:Kappa統計量(Kappa statistic)
第3章 檔案形式與屬性類型的轉換
3.1 調整檔案編碼為UTF-8
3.2 Weka如何載入CSV檔案
3.3 在ARFF-Viewer中載入CSV文件
3.4 在Weka Explorer中載入CSV文件
3.5 使用Excel中的其他檔案格式
3.6 屬性類型的轉換步驟
3.7 如何將UCI Dataset的副檔名*.data改成*.CSV
第4章 屬性的選擇
4.1 何謂「選擇屬性」
4.2 其他屬性選擇方法
第5章 分類分析
5.1 決策樹(Decision Tree)
5.2 隨機森林(Random Forest)
第6章 集群分析
6.1 K平均法(K-means)
6.2 階層式集群法(Hierarchical Clustering)
6.3 EM法(Expectation Maximization,期望最大化法)
第7章 關聯規則分析
7.1 數據分析中的經典案例
7.2 關聯規則(Association Rule)
第8章 時間序列分析
8.1 時間數列數據的迴歸分析模型
8.2 利用Weka進行的時間序列預測
8.3 Weka提供7種評估指標
第9章 「實踐篇」:使用Weka的各種例題
9.1 將Weka的數據集寫成「CSV格式」
9.2 使用Weka在web上公開的數據集
9.3 使用Weka須知
9.4 各種例題使用Weka
9.5 Fisher的Iris
第10章 貝氏網路模型
10.1 使用數據arff形式的「weather」(數值模型例)
10.2 支持向量機(Support Vector Machine, SVM)中的Kernnel函數
10.3 Weka的Knowledge Flow
第11章 Weka API
11.1 Weka的檔案結構
11.2 Weka重要套件