第一部分是基礎篇(第1~5章),第1章的主要內容是數據挖掘概述;第2章對Python以及本書所用到的數據挖掘建模庫進行了簡明扼要的說明;第3章、第4章、第5章對數據挖掘的建模過程,包括數據探索、數據預處理及挖掘建模的常用算法與原理進行了介紹。第二部分是實戰篇(第6~15章),重點對數據挖掘技術在電力、航空、醫療、互聯網、生產制造以及公共服務等行業的應用進行了分析。在案例結構組織上,本書是按照先介紹案例背景與挖掘目標,再闡述分析方法與過程,最后完成模型構建的順序進行的,在建模過程關鍵環節,穿插程序實現代碼。最后通過上機實踐,加深數據挖掘技術在案例應用中的理解。
張良均,資深大數據挖掘專家和模式識別專家,有10多年的大數據挖掘應用、咨詢經驗,10余年數據倉庫系統管理與實施經驗,超過10年的系統開發與設計經驗。為電信、電力、互聯網、生產制造、零售、銀行、生物、化工、醫藥等多個行業上百家大型企業提供過數據挖掘應用與咨詢服務,實踐經驗非常豐富。此外,他精通Java EE企業級應用開發,是廣東工業大學和華南師范大學兼職教授,著有《神經網絡實用教程》、《數據挖掘:實用案例分析》等暢銷書。