3 版修訂版序言
2 版增訂版序言
1 版前言
第 1 章 基本概念 1
§1 數的概念 1
§2 數的連續性 3
§3 數的集合·上確界·下確界 4
§4 數列的極限 5
§5 區間套法 10
§6 收斂條件與柯西判別法 12
§7 聚點 15
§8 函數 17
§9 關於連續變量的極限 21
§10 連續函數 25
§11 連續函數的性質 28
§12 區域 · 邊界 31
習題 35
第 2 章 微分 37
§13 微分與導函數 37
§14 微分法則 40
§15 複合函數的微分 42
§16 反函數的微分法則 45
§17 指數函數和對數函數 48
§18 導函數的性質 51
§19 高階微分法則 55
§20 凸函數 56
§21 偏微分 58
§22 可微性與全微分 60
§23 微分的順序 62
§24 高階全微分 65
§25 泰勒公式 67
§26 極大極小 74
§27 切線和曲率 81
習題 93
第 3 章 積分 96
§28 古代求積方法 96
§29 微分發明之後的求積方法 98
§30 定積分 101
§31 定積分的性質 108
§32 積分函數, 原函數 112
§33 積分定義擴展 (廣義積分) 116
§34 積分變量的變換 125
§35 乘積的積分 (分部積分或分式積分) 128
§36 勒讓德球函數 135
§37 不定積分計算 139
§38 定積分的近似計算 143
§39 有界變差函數 148
§40 曲線的長度 151
§41 線積分 156
習題 160
第 4 章 無窮級數與一致收斂 163
§42 無窮級數 163
§43 *對收斂和條件收斂 164
§44 *對收斂的判別法 168
§45 條件收斂的判別法 173
§46 一致收斂 176
§47 無窮級數的微分和積分 179
§48 關於連續變量的一致收斂, 積分符號下的微分和積分 184
§49 二重數列 195
§50 二重級數 197
§51 無窮積 204
§52 冪級數 208
§53 指數函數和三角函數 217
§54 指數函數和三角函數的關係, 對數函數和反三角函數 222
習題 229
第 5 章 解析函數及初等函數 232
§55 解析函數 232
§56 積分 236
§57 柯西積分定理 241
§58 柯西積分公式, 解析函數的泰勒展開 247
§59 解析函數的孤立奇點 251
§60 z = ∞ 處的解析函數 256
§61 整函數 257
§62 定積分計算 (實變量) 258
§63 解析延拓 264
§64 指數函數和三角函數 268
§65 對數 ln z 和一般冪 zα 277
§66 有理函數的積分理論 282
§67 二次平方根的不定積分 287
§68 Γ 函數 290
§69 斯特林公式 301
習題 307
第 6 章 傅裡葉展開 314
§70 傅裡葉級數 314
§71 正交函數系 315
§72 任意函數系的正交化 316
§73 正交函數列表示的傅裡葉展開 318
§74 傅裡葉級數累加平均求和法 (費耶定理) 322
§75 光滑週期函數的傅裡葉展開 325
§76 非連續函數的情況 326
§77 傅裡葉級數的例子 329
§78 魏爾斯特拉斯定理 333
§79 積分*二中值定理 336
§80 關於傅裡葉級數的狄利克雷–若爾當條件 338
§81 傅裡葉積分公式 341
習題 343
第 7 章 微分續篇 (隱函數) 345
§82 隱函數 345
§83 反函數 351
§84 映 354
§85 對解析函數的應用 359
§86 曲線方程 364
§87 曲面方程 369
§88 包絡線 373
§89 隱函數的極值 375
習題 379
第 8 章 多變量積分 381
§90 二元以上的定積分 381
§91 面積的定義和體積的定義 382
§92 一般區域上的積分 387
§93 化簡成一元積分 391
§94 積分意義的擴展 (廣義積分) 398
§95 多變量定積分表示的函數 405
§96 變量變換 408
§97 曲面面積 421
§98 曲線坐標 (體積、曲面積和弧長等的變形) 429
§99 正交坐標 437
§100 面積分 441
§101 向量記號 443
§102 高斯定理 445
§103 斯托克斯定理 453
§104 全微分條件 457
習題 461
第 9 章 勒貝格積分 464
§105 集合運算 464
§106 加法集合類 (σ 系) 468
§107 M 函數 468
§108 集合的測度 473
§109 積分 475
§110 積分的性質 479
§111 可加集合函數 488
§112 *對連續性和奇異性 492
§113 歐式空間和區間的體積 495
§114 勒貝格測度 497
§115 零集合 503
§116 開集合和閉集合 505
§117 博雷爾集合 509
§118 積分表示的集合測度 510
§119 累次積分 516
§120 與黎曼積分的比較 517
§121 斯蒂爾切斯積分 519
§122 微分定義 521
§123 Vitali 覆蓋定理 523
§124 可加集合函數的微分 526
§125 不定積分的微分 530
§126 有界變差和*對連續的點函數 532
附錄 I 無理數論 535
§1 有理數分割 535
§2 實數的大小 536
§3 實數的連續性 537
§4 加法 538
§5 *對值 540
§6 極限 540 §7 乘法 542
§8 冪和冪根 543
§9 實數集合的一個性質 544
§10 複數 545
附錄 II 若干特殊曲線 547
補遺 關於處處不可微的連續函數 551