強化學習是目前機器學習乃至人工智能領域發展最快的分支之一。強化學習的基本思想是通過與環境的交互、智能體或智能算法獲取相關智能,其具體過程就是根據環境反饋得到的獎勵不斷調整自身的策略進而獲得最大獎勵決策的學習歷程。本書主要講述了強化學習的基本原理和基本方法,基於強化學習的控制、決策和優化方法設計與理論分析,深度強化學習原理以及平行強化學習等未來強化學習的發展新方向,展示從先行後知到先知後行,再到知行合一的混合平行智能思路。本書可作為高等學校人工智能、機器學習、智能控制、智能決策、智慧管理、系統工程以及應用數學等專業的本科生或研究生教材,亦可供相關專業科研人員和工程技術人員參考。