購物比價 | 找書網 | 找車網 |
FindBook |
有 1 項符合
現代偏微分方程引論(簡體書)的圖書 |
圖書館借閱 |
國家圖書館 | 全國圖書書目資訊網 | 國立公共資訊圖書館 | 電子書服務平台 | MetaCat 跨館整合查詢 |
臺北市立圖書館 | 新北市立圖書館 | 基隆市公共圖書館 | 桃園市立圖書館 | 新竹縣公共圖書館 |
苗栗縣立圖書館 | 臺中市立圖書館 | 彰化縣公共圖書館 | 南投縣文化局 | 雲林縣公共圖書館 |
嘉義縣圖書館 | 臺南市立圖書館 | 高雄市立圖書館 | 屏東縣公共圖書館 | 宜蘭縣公共圖書館 |
花蓮縣文化局 | 臺東縣文化處 |
|
微局部分析自20世紀60年代中創立以來在推動偏微分方程理論的發展上已有長足的進步。迄至70年代末已成定型,人稱“70年代演算法”。其後更向精密化發展;同時由線性領域向非線性領域發展。這顯然是90 年代大有希望的研究方向。本書的目的是就兩個專門問題:非線性奇性分析以及次橢圓問題介紹這些發展,其中不少內容是作者本人的研究成果。本書的結構大體上是:第二、三、四章主題是非線性微局部分析,包括J.-M.Bony所創立的仿微分運算元理論以及非線性奇性分析。後三章包括了非齊性Sobolev空間上的擬微分運算元理論和它在次橢圓問題上的應用,以及高次微局部的理論等等。以上兩部分都是當前正在活躍發展的研究領域。為了使讀者能明瞭這些進展的由來並方便讀者閱讀,在第一章中系統而又概括地介紹了經典的微局部分析。
齊民友,1930年出生,1952年畢業于武漢大學數學系,并從事偏微分方程理論的研究。現任武漢大學數學研究所教授、博士導師,國務院學位委員會委員。他的工作《Fuchs型和奇性偏微分方程的研究》獲得1987年國家自然科學四等獎。
引言
第一章 經典的擬微分算子理論
1.1 象征的類
1.2 擬微分算子的基本性質
1.3 波前集
1.4 擬微分算子的代數
1.5 橢圓與亞橢圓擬微分算子
1.6 擬微分算子與Sobolev空間
1.7 Hormander平方和定理
第二章 仿微分算子理論
2.1 Littlewood-Paley理論
2.2 函數空間的代數運算
2.3 仿微分算子
2.4 非線性偏微分方程的仿線性化
2.5 對非線性偏微分方程的應用
第三章 切向仿微分算子理論
3.1 Hormander空間
3.2 切向仿微分算子
3.3 切向仿線性化
3.4 非線性方程解的奇異性的反射
第四章 余法分布空間和余法奇性
4.1 余法分布空間
4.2 余法奇性的傳播
4.3 余法奇性的相互作用(1)
4.4 余法奇性的相互作用(2)
4.5 余法奇性的反射
4.6 關于余法奇性的其他結果
第五章 非齊性空間上的擬微分算子
5.1 幾何結構
5.2 軟禁估計
5.3 單位分解和對稱緩增
5.4 象征運算
5.5 漸近運算
第六章 帶權Sobolev空是及擬微分算子的逆
6.1 象征的二重單位分解
6.2 帶權Soblev空間
6.3 擬微分算子的特征化
6.4 算子的逆與象征的逆
6.5 Littlewood-Paley理論
6.6 Hǒrmander平方和算子的逆
第七章 高次微局部化理論
7.1 高階的度量物和軟禁
7.2 k-次和微局部化
7.3 二次徵局部化
7.4 二次微局部化的應用
參考文獻
|