有多部著作,本書是其代表作之一,還著有Weak Convergence and Empirical Processes: With Applications to Statistics。
目錄
Preface
Notation
1. Introduction
1.1. Approximate Statistical Procedures
1.2. Asymptotic Optimality Theory
1.3. Limitations
1.4. The Index n
2. Stochastic Convergence
2.1. Basic Theory
2.2. Stochastic o and O Symbols
2.3. Characteristic Functions
2.4. Almost-Sure Representations
2.5. Convergence of Moments
2.6. Convergence-Determining Classes
2.7. Law of the Iterated Logarithm
2.8. Lindeberg-Feller Theorem
2.9. Convergence in Total Variation
Problems
7. Local Asymptotic Normality
7.1. Introduction
7.2. Expanding the Likelihood
7.3. Convergence to a Normal Experiment
7.4. Maximum Likelihood
7.5. Limit Distributions under Alternatives
7.6. Local Asymptotic Normality
Problems
8. Efficiency of Estimators
8.1. Asymptotic Concentration
8,2, Relative Efficiency
8.3. Lower Bound for Experiments
8.4. Estimating Normal Means
8.5. Convolution Theorem
8.6. Almost-Everywhere Convolution Theorem
8.7. Local Asymptotic Minimax Theorem
8.8. Shrinkage Estimators
8.9. Achieving the Bound
8.10. Large Deviations
Problems
9. Limits of Experiments
9.1. Introduction
9.2. Asymptotic Representation Theorem
9.3. Asymptotic Normality
9.4. Uniform Distribution
9.5. Pareto Distribution
9.6. Asymptotic Mixed Normality
9.7. Heuristics
Problems
13. Rank, Sign, and Permutation Statistics
13.1. Rank Statistics
13.2. Signed Rank Statistics
13.3. Rank Statistics for Independence
13.4. Rank Statistics under Alternatives
13.5. Permutation Tests
13.6. Rank Central Limit Theorem
Problems
14. Relative Efficiency of Tests
14.1. Asymptotic Power Functions
14.2. Consistency
14.3. Asymptotic Relative Efficiency
14.4. Other Relative Efficiencies
14.5. Rescaling Rates
Problems
15. Efficiency of Tests
15.1. Asymptotic Representation Theorem
15.2. Testing Normal Means
15.3. Local Asymptotic Normality
15.4. One-Sample Location
15.5. Two-Sample Problems
Problems
16. Likelihood Ratio Tests
16.1. Introduction
16.2. Taylor Expansion
16.3. Using Local Asymptotic Normality
16.4. Asymptotic Power Functions
16.5. Bartlett Correction
16.6. Bahadur Efficiency
Problems
17. Chi-Square Tests
17.1. Quadratic Forms in Normal Vectors
17.2. Pearson Statistic
17.3. Estimated Parameters
17.4. Testing Independence
17.5. Goodness-of-Fit Tests
17.6. Asymptotic Efficiency
Problems
18. Stochastic Convergence in Metric Spaces
18.1. Metric and Normed Spaces
18.2. Basic Properties
18.3. Bounded Stochastic Processes
Problems