目次序
第一章 古典機率
1-1 集合理論
1-2 排列與組合
1-3 機率之要素
1-4 條件機率與貝氏定理
1-5 獨立事件
第二章 離散型隨機變數
2-1 機率質量函數(Probability Mass Function, PMF)
2-2 累積分佈函數(Cumulative Distribution Function)
2-3 期望值
2-4 隨機變數之函數與變數變換
2-5 條件質量函數(Conditional PMF)
2-6 動差生成函數(Moment generating function, MGF)
附錄:Taylor Series and Maclaurin Series
第三章 常用的離散型機率分佈
3-1 均勻分佈(Uniform Distribution)
3-2 伯努利與二項分佈
3-3 幾何分佈
3-4 負二項分佈
3-5 超幾何分佈
3-6 布阿松分佈
3-7 多項分佈
第四章 多重離散型隨機變數
4-1 聯合機率質量函數
4-2 隨機變數之函數
4-3 共變異數(Covariance)
4-4 條件機率質量函數
4-5 獨立(Independent)隨機變數
4-6 條件聯合機率質量函數
4-7 變數轉換
4-8 三維以上之離散隨機變數
第五章 連續型隨機變數
5-1 累積分佈函數與機率密度函數
5-2 期望值與變異數
5-3 變數變換
5-4 條件機率密度函數
5-5 動差生成函數
5-6 特徵函數 ( Characteristic Function )
附錄
第六章 常用的連續型機率分佈
6-1 均勻分佈(Uniform Distribution)
6-2 指數分佈(Exponential distribution)
6-3 Gamma () 分佈
6-4 常態分佈
6-5 Beta分佈、Weibull分佈及Cauchy分佈
6-6 由常態分佈所衍生之機率分佈
附錄一:常用的連續型機率分佈
附錄二:標準常態分佈之CDF
附錄三:特殊函數
第七章 多重連續型隨機變數
7-1 聯合機率密度函數 (Joint PDF)
7-2 二維隨機變數之函數
7-3 條件機率密度函數
7-4 獨立隨機變數
7-5 多變數的變數變換
7-6 雙變數常態分佈
7-7 三維以上之連續型隨機變數
附錄:重積分與座標(變數)變換
第八章 機率不等式及中央極限定理
8-1 機率不等式
8-2 大數法則(Law Of Large Numbers)
8-3 中央極限定理(Central limit theorem)
第九章 取樣與估計
9-1 取樣
9-2 點估計器 (Point Estimator)
9-3 最大可能性估計器 (Maximum-Likelihood Estimator, MLE)
9-4 區間估計
第十章 臆測測試(Hypothesis Testing)
10-1 簡介
10-2最大可能性(Maximum Likelihood, ML) 檢測器
10-3 單邊的臆測測試
10-4 雙邊臆測測試
10-5 Bayes 決定法則
第十一章 隨機程序(Random Process)導論
11-1 隨機程序之定義
11-2 隨機程序之分佈函數
11-3 自相關函數及互相關函數
11-4 高斯隨機程序(Gaussian Random Process)