1.1 Differential Equation (DE) 1-2
1.2 First Order DE 1-5
1.3 Homogeneous DE 1-7
1.4 Near Homogeneous DE 1-8
1.5 Exact DE 1-11
1.6 Integrating Factors and Bernoulli DE 1-12
1.7 Linear DE 1-16
1.8 The Riccati DE..............................
1.9 Applications of the 1st Order DE.............
1.10 Orthogonal Trajectories...............................
1.11 Existence and Uniqueness of Solutions of Initial Value
1.12 Direction Field.......................................
1.13 Picard's Iteration Method.............................
1.14 一般習題...............................................
1.15 電學系群相關應用題.....................................
2.1 Linear Second Order DE 2-2
2.2 Reduction of Order 2-5
2.3 2-7
2.4 TheCauchy-Euler DE.....................................
2.5 二階齊次DE的應用 2-11
2.6 Nonhomogeneous Second Order DE 2-13
2.7 The Method of Undetermined Coefficients 2-15
2.8 Variation of Parameters 2-16
2.9 Forced Oscillations, Resonance, Beats, and Electrical C
2.10 一般習題..............................................
2.11 電學系群相關應用題.....................................
3.1 DE, Order 3-2
3.2 Constant Coefficient, Homogeneous DE 3-3
3.3 n-th Order Cauchy-Euler DE 3-4
3.4 The Methods of Undermined Coefficients (UC) and Variat
3.5 Operator Techniques 3-11
3.6 一般習題 3-16
3.7 電學系群相關應用題 3-18
4.1 Definition and Theory of the LT 4-2
4.2 Solving Initial Value Problems Using the LT 4-5
4.3 The First Shifting Theorem 4-9
4.4 The Heaviside Function and the Second Shifting 4-11
4.5 Unit Impulse and the Dirac Delta Function 4-21
4.6 Solution of Systems by the LT 4-23
4.7 一般習題 4-25
4.8 電學系群相關應用題 4-31
5.1 Series Solutions of DE................................
5.2 Singular Points and the Method of Frobenius............
5.3 Series Expansions and Orthogonal Sets of Functions.....
5.4 Sturm-Liouville Theorem and Boundary Value Problems.....
5.5 一般習題...............................................
5.6 電學系群相關應用題......................................
6.1 The First Problem in the COV 6-2
6.2 An Euler Equation for 6-8
6.3 Isoperimetric Problems 6-9
6.4 Principal Component Analysis 6-11
6.5 一般習題 6-15
6.6 電學系群相關應用題 6-17
7.1 Vector Functions of One Variable 7-2
7.2 Velocity, Acceleration, Curvature, Torsion (扭率) 7-4
7.3 Vector Field and Lines of Force 7-9
7.4 The Gradient Vector Field 7-12
7.5 Divergence (散度) and Curl (旋度) 7-17
7.6 一般習題 7-20
7.7 電學系群相關應用題 7-22
8.1 Line Integrals 8-2
8.2 Green's Theorem 8-4
8.3 Independence of Path and Potential Theory in the Plane..
8.4 Surfaces and Surface Integrals 8-11
8.5 The Divergence Theorem of Gauss 8-15
8.6 Applications of the Divergence Theorem 8-17
8.7 Stokes's Theorem 8-19
8.8 一般習題 8-21
8.9 電學系群相關應用題 8-26
9.1 Fourier Series 9-2
9.2 Convergence, Differentiation, and Integration of Fourie
9.3 Fourier Sine & Cosine Series 9-7
9.4 Multiple Fourier Series 9-10
9.5 Periodic Functions and the Amplitude Spectrum 9-11
9.6 Complex Fourier Series (CFS) and Frequency Spectra......
9.7 Fourier Integral (FI) 9-15
9.8 The Fourier Transform (FT) 9-19
9.9 Additional Properties of F.T 9-23
9.10 Fourier Sine and Cosine Transforms 9-25
9.11 一般習題 9-27
9.12 電學系群相關應用題 9-33
10.1 Introduction 10-2
10.2 Fourier Series Solution of the Wave Equation 10-6
10.3 Fourier Series Solution of the Heat Equation 10-9
10.4 Steady-State Temperatures in a Flat Plate 10-11
10.5 Solution of the Heat and Wave Equations in Unbounded Do
10.6 Some Problems in which Separation of Variables Fails...
10.7 一般習題 10-22
10.8 電學系群相關應用題 10-24
參考文獻 R-1
縮寫 A-1
中英文名詞對照與索引 I-1
x
ix