近數年各行各業的發展都朝網路及大數據靠攏,他們需要懂得網路運作的法政人才、了解數據分析的銷售人才、擅長數位技術的金融人才、孰悉資訊技術的醫療人才、深諳資料處理及分析的文學人才。過去,想要跨足資訊領域很困難,因為門檻很高(無論是軟硬體的需求都很昂貴而且學習困難),所以資訊科班出身的人才很吃香,但未來人才的競爭力來自於跨領域的能力,光靠資訊技術難以滿足創新時代的要求,反而是那些具備理工、法商、文史、生醫等專業而又懂得資料處理者才是時代的寵兒。因為現代資訊領域的門檻已大幅降低,金費及時間已不是問題,只要您願意突破心理障礙,大膽跨入新領域,就會有驚人的收穫。本書旨在協助您跨足新領域、展開新視界,讓您成為高人一等的Data Analyst數據分析師,或Big Data Engineer大數據工程師。
由於網路交易的頻繁及政府資料庫的開放,資料的產出如海水般湧入,資料的取得及保存也「易於往昔」,故如何運用電腦從中挖掘有用的資訊,以提高決策品質,才是今日各界需要面對的重點,但是怎麼挖?用甚麼工具挖?
資料採礦涉及許多不同的演算方法,如果不能了解其演算原理,就會陷入「知其然而不知其所以然」的盲點,甚或誤用採礦方法。坊間有關資料採礦的書籍很多,但多欠缺深入的解說,只是重點翻譯或是規則重述,沒有作者自己的思維(消化咀嚼之後的表述),以致讀者閱讀之後仍是一頭霧水,這類書籍充其量只能作為授課大綱,而無助於問題之解決。
本書分為10章,第1章說明R語言的用法,第2~8章為關聯分析、叢集分析、分類分析、資料包絡分析、決策樹、隨機森林等各種演算方法的深入剖析,第9章引領讀者進入「類神經網路及人工智慧」的殿堂,最後一章則為R語言之大數據處理。本書不但說明如何使用R語言的套件來進行資料採礦,更從不同角度闡述這些採礦模型(演算法)的原理,並以淺顯易懂的範例讓讀者了解其成因及產出,例如關聯分析之強度指標、貝氏分類的機率計算、階層分群之演算步驟、剪影係數的計算解析、決策樹之建構程序、隨機森林之節點路徑、類神經網路的權值修正等,只要讀者願意投入些許時間,必能豁然開朗、明其堂奧。