This book has two chapters. The first is a modern or contemporary account of stability theory. A focus is on the local (formula-by-formula) theory, treated a little differently from in the author’s book Geometric Stability Theory. There is also a survey of general and geometric stability theory, as well as applications to combinatorics (stable regularity lemma) using pseudofinite methods.The second is an introduction to ’continuous logic’ or ’continuous model theory, ’ drawing on the main texts and papers, but with an independent point of view. This chapter includes some historical background, including some other formalisms for continuous logic and a discussion of hyperimaginaries in classical first order logic.These chapters are based around notes, written by students, from a couple of advanced graduate courses in the University of Notre Dame, in Autumn 2018, and Spring 2021