購物比價找書網找車網
FindBook  
 有 1 項符合

Advanced Modeling and Inference: Learning Latent Structures and Causality from Data

的圖書
Advanced Modeling and Inference: Learning Latent Structures and Causality from Data Advanced Modeling and Inference: Learning Latent Structures and Causality from Data

作者:Zhou 
出版社:World Scientific Publishing Company
出版日期:2025-04-11
語言:英文   規格:精裝 / 250頁 / 普通級/ 初版
圖書選購
型式價格供應商所屬目錄
 
$ 5280
博客來 博客來
機率與數理統計
圖書介紹 - 資料來源:博客來   評分:
圖書名稱:Advanced Modeling and Inference: Learning Latent Structures and Causality from Data

內容簡介

Inferring latent structure and causality is crucial for understanding underlying patterns and relationships hidden in the data. This book covers selected models for latent structures and causal networks and inference methods for these models.

After an introduction to the EM algorithm on incomplete data, the book provides a detailed coverage of a few widely used latent structure models, including mixture models, hidden Markov models, and stochastic block models. EM and variation EM algorithms are developed for parameter estimation under these models, with comparison to their Bayesian inference counterparts. We make further extensions of these models to related problems, such as clustering, motif discovery, Kalman filtering, and exchangeable random graphs. Conditional independence structures are utilized to infer the latent structures in the above models, which can be represented graphically. This notion generalizes naturally to the second part on graphical models that use graph separation to encode conditional independence. We cover a variety of graphical models, including undirected graphs, directed acyclic graphs (DAGs), chain graphs, and acyclic directed mixed graphs (ADMGs), and various Markov properties for these models. Recent methods that learn the structure of a graphical model from data are reviewed and discussed. In particular, DAGs and Bayesian networks are an important class of mathematical models for causality. After an introduction to causal inference with DAGs and structural equation models, we provide a detailed review of recent research on causal discovery via structure learning of graphs. Finally, we briefly introduce the causal bandit problem with sequential intervention.

 

詳細資料

  • ISBN:9789811290688
  • 規格:精裝 / 250頁 / 普通級 / 初版
  • 出版地:美國
贊助商廣告
 
 
金石堂 - 暢銷排行榜
伊谷納多的新娘(01)特典版
作者:もりもより
出版社:青文出版社股份有限公司
出版日期:2025-05-28
$ 142 
金石堂 - 暢銷排行榜
穿著羊皮的野獸(01)
作者:九號
出版社:尖端漫畫
出版日期:2025-05-20
$ 153 
博客來 - 暢銷排行榜
媽媽,你會永遠愛我嗎?
作者:凱瑟琳.勒布朗
出版社:維京
出版日期:2016-06-01
$ 199 
 
金石堂 - 新書排行榜
員工體驗管理:以人為本,喚醒經營者的初心
作者:鄭偉修、李秉懿
出版社:時報文化出版企業股份有限公司
出版日期:2025-04-18
$ 277 
博客來 - 新書排行榜
獄卒克拉肯(03)
$ 110 
博客來 - 新書排行榜
世界一初戀~小野寺律的情況~ (18)
出版日期:2025-05-22
$ 119 
博客來 - 新書排行榜
如果是你,或許可以相戀(01)
$ 119 
 

©2025 FindBook.com.tw -  購物比價  找書網  找車網  服務條款  隱私權政策