前言
多數人學到的第一個方程式非常簡單:
1+1=2
如此基本,但意義卻如此重大!它說明了加法的基本定義:一個單位加上一個單位,等於兩個單位。它之所以意義重大,是因為它展示了其他所有方程式的格式:包括算術、數學整體、物理學,以及其他科學分支。這些項(term)的排列方式,顯示了它們彼此之間一種特殊的關係。這個簡短卻基本的方程式就像一根魔法棒,開啟了許多道門。它就像是通往知識的入口--這第一小步,是後續無數步伐每一步的基礎。加拿大卡加立皇家山學院(Mount Royal College)英文教師,也是詩人的哈里森(Richard Harrison)曾經寫信給我,談到這個意義深遠的算式:
1+1=2是數學的童話故事,這是我教我兒子的第一個方程式,也是展現人類心智具備改變真實世界的神奇力量的第一個算式。我還記得我兒子在學這個算式的時候,他伸出兩手的食指,也就是用來比「1」的手指,當他看到被自己整個身體隔開的這兩根手指,可以在他的腦海中用一個單一的概念合而為一,那個神奇的時刻,或許是他第一個真正的哲學驚奇……當我看到兒子心智大開,知道「1+1」不僅是「1+1」的時候,了解到那個小小的方程式就像一把鑰匙,它帶領我兒子領悟的並非外在世界的驚奇,而是他自己與我們所有人內心的奇妙世界。
哈里森的描述提醒我們,學習一個方程式,至少像1+1=2如此基本的方程式,實際上就像一趟旅程。這趟旅程有三個階段。一開始我們對那個方程式一無所知。之後我們經由學校教育,或由於偶然因素,或出於好奇,或刻意安排,理解了那個方程式,過程中經常伴隨著不滿和挫折。最後,學習方程式的經驗轉變了我們體驗世界的方式,讓我們自然而然地,即便只是片刻瞬間,滿是驚奇。
本書探討的就是那些旅程。
最早的人類生活沒有方程式存在,他們也不需要方程式。伊甸園裡沒有方程式,智慧樹上也沒有方程式。蘇美人的天堂迪爾姆(Dilmun)沒有方程式,中國人信仰的盤古開天的宇宙蛋(cosmic egg)裡沒有方程式,所有其他各種神話的人類起源地也沒有方程式。當時的人類甚至沒有方程式的概念。這個概念是人類發明的,是我們試圖了解這個世界而創造的。即便如此,人類並不是某天醒來,突然決定要發明方程式。隨著時間演進,人類有了這樣的需求,於是科學化的方程式概念到了非常近期的人類歷史上才首次出現。
拉丁文的aequare這個字,意思是變得平坦或平均。許多現代的英文單字源於這個字根,包括adequate(適當的)、equanimity(鎮靜)、equality(同等)、equilibrium(均衡)、egalitarian(平等主義的)、equivalence(等義)、equivocation(雙關性)。「equation」這個字原先只是指分割成相等的群體。舉例來說,「equator」(赤道)是地理學家想像的一條線,把地球對分成大約均等的兩個區域。中世紀的占星家用「equation」這個字,代表他們自行把太陽與行星的運行軌道劃分成相等區域的過程,每一個區域據稱都由一個不同的星群管轄。
在此同時,數字和計算成為人類生活重要的一環。商人用數字來記帳、處理財務、編列預算;宗教權威利用數字來記錄年分、季節,以及如出生、死亡和結婚等特殊事件;政府官員則利用數字來進行人口統計、普查和課稅。因此開始需要發展符號,以標示數字和量。西元前3世紀,希臘數學家丟番圖(Diophantus)更進一步,利用符號代表未知的量,並建立關於這些量的運算規則,包括減法和加法。他不僅說明了如何利用符號來描述一個未知數,以便從一些已知數求得這個未知數(所謂行列式方程式〔determinate equation〕),也說明了這些符號可以藉由一個無限集合的解法來計算數字(丟番圖方程〔Diophantine equation〕或不定方程〔indeterminate equation〕)。這些離現代的方程式概念還有一大段距離。即使是伽利略(Galileo Galilei)和牛頓(Isaac Newton),也都是用文字以比(ratio)的形式來表述他們重要的研究成果,包括伽利略的落體定律和牛頓的運動定律,而不是用研究科學的學生熟悉的方程式。直到18世紀,自然科學家才習慣以今日我們所知的方程式形式,表述他們的研究結論。
因此,即使只是撰寫最簡單的方程式,仍需要經歷一段漫長的歷史和概念之旅。1910年,歷史上最偉大的數學家中的兩位,懷海德(Alfred North Whitehead)和羅素(Bertrand Russell),出版了條理分明、體系化的著名教科書《數學原理》(Principia Mathematica),共有三冊,以一種純邏輯的方式,完整推演出數學的基本原則。1+1=2這個方程式在哪裡第一次出現?就在第一冊的後半部!
拜這段漫長旅程之賜,「方程式」這個詞終於有了科學意義,成為某個特別的結構化語言的一部分,指的是兩個可度量的量,或可度量的量的集合,是相等的(那麼嚴格來說,表述不等式〔inequality〕的陳述不是方程式)。在這個對現代數學和科學不可或缺、如密碼般的結構化語言中,符號代表可以用來進行各種運算(加減乘除是最簡單的例子)的其他工具的集合。
自從發展出這個特別的專門術語,每個方程式都經歷兩種不同類型的發現過程。首先由第一個發現某個方程式的人提出,也就是把那個方程式介紹到人類文化中的人。之後,每一個學習這個方程式的人重新發現它。
某個方程式的發現之旅,有著與其他歷史轉捩點不同的背景因素。方程式的出現,並不是由血腥的戰場或強大政治力量的衝突建構而成。它反而往往出現在悄然寂靜的地方,遠離令人分心的事物和外界的干擾,例如研究室和圖書館。馬克士威(James Clerk Maxwell)在他的書房裡,寫下改變世界的方程式;海森堡(Werner Heisenberg)在一座孤島上,開始匯整他的方程式。這樣的環境讓科學家處理他們的不滿,探索令人苦惱的感受,因為他們手邊拼合的作品無法適切整合,需要做某種調整或增添某個新的東西。於是科學家將注意力集中在某個問題上,那個問題往往可能用容易誤導的簡化方式來表達:這個正三角形的邊長是多少?天體之間的作用力有多強?電如何移動?可不可以把兩個看似矛盾的給定理論整合在一起?這合理嗎?
當解答出現的時候,它看起來合乎邏輯,甚至像是必然的結果。寇茲(Roger Cotes)在牛頓的經典名著《自然哲學的數學原理》(Mathematical Principles of Natural Philosophy,簡稱《原理》)第二版的一篇序言裡寫道,這部作品「獲得普遍接受」。方程式的發現者常常覺得,自己好像偶然發現某個早就存在的東西。因此,方程式就像珍寶,某個眼光獨到的人發現未經琢磨的原石,經過挖掘和檢視,置於雄偉的知識寶庫,代代相傳。方程式如此便於說明科學發現,又如此適用於教科書,可說是知識的尋寶圖。它精簡濃縮了一段艱困的過程,向我們傳達了發現者、時間、地點的訊息,往往還有成因或目的。一個事件或時刻,例如掉下一顆蘋果,成為一種提喻(以部分代表整體),清楚呈現了那段漫長的發現過程。世世代代的學者繼而藉由批評那個模型,並讓它複雜難解,贏得聲名。這個尋寶圖對所有人都有用處!
然而,不管這幅搜尋世界的尋寶圖多麼有用,卻會讓人以為,方程式是這個世界的基本特徵,而不是人類創造出來的。的確,我們出生在一個已經有了方程式的世界,那些方程式不是「我們」創造的。這就是為什麼有時候方程式看起來好像其實並非出自人類的發明,而是在人類出現很久以前便已存在:上帝在第八天創造了方程式,作為他的工(His work)的藍圖。或者,如伽利略所言,自然之書(Book of Nature)是用數學符號寫成的。
但每一個方程式都出自人類之手。它是某個人在某個特定的地點和時間統合而成,他覺得有必要對手邊的東西不滿,想要了解弄懂事情,或有時只是想讓某件看似極端複雜的事更容易理解。有時候這個創造過程掩藏於古代,就像畢氏定理(Pythagorean theorem)的例子,早在畢達哥拉斯(Pythagoras)之前,這項定理的原理就為人知曉。有時候方程式發現者的書信、草稿和筆記,詳細披露了這個創造過程,如牛頓和愛因斯坦(Albert Einstein)提出的方程式。但在任一例子裡,都不能說方程式是他們個人的成果,因為這些科學家即使獨自進行研究的時候,都在與其他科學家共同研究理解自然的過程中,進行了無數對話。
當英國科學家黑維塞(Oliver Heaviside)將馬克士威的研究成果,重新整理成今日眾所周知的基本形式時,也就是現在所稱的馬克士威方程式(Maxwell's equations),提到他只是想更清晰易懂地了解馬克士威的研究而已。這樣的動機,也就是意識到可以用更好的方式來表述某件已經約略了解的事,可以說是所有方程式發現者的心聲。
當一個人真的針對某個基本議題提出新的方程式之後,當他解決了他的不滿之後,我們自己和這個世界都將為之改變。因此,這類方程式不僅教導我們如何進行某種計算,為這相同的世界帶來新的工具,如哈里森所言,方程式還可以做「更多」。在學習1+1=2的過程中,他的兒子不只是輸入一個新的數據點,更轉換了思維,對這個世界有了一種新的理解。但這種新的理解,伴隨著新的迷惑和新的不滿。
哈里森的敘述最後提醒我們,方程式可以激發驚奇的感覺。科學不是一種呆板機械式的活動,讓我們漠然地靈活操縱或凝視這個世界,而是有著非常微妙情感層面的生活形式。當然,有了一項新發現或新成就時,想要開香檳慶祝的喜悅之情會油然而生。但如果科學只能激發這種情緒,也就是有了讓人名利雙收的發現而感到雀躍,將會是可悲的行業,因為這樣的時刻寥寥可數。幸運的是,科學引發的情緒更加多樣化,更加深刻。科學研究中的每一個時刻都伴隨著不斷出現的各種情緒,包括迷惘、困惑、好奇、渴望、找出答案的強烈欲望、對毫無成果的厭倦、一事無成的沮喪、方向正確帶來的狂喜。這樣的情緒始終存在,並未深藏,卻經常被忽略,不過只要我們決定留意它們,很容易就察覺到。
當我們第一次學會一個重要的方程式時,我們瞥見的世界結構,比我們猜想的更深層,這種方式顯露出真實世界與我們經驗中的世界兩者之間的深層連結。在這樣的時刻,我們的反應不會只是:「是啊,那樣有道理」,或甚至常說的「茅塞頓開的一刻」。後者這種簡略的說法,與指引獲取知識的尋寶圖形影相隨,因為它將伴隨發現而產生的情緒簡化並壓縮至一瞬間。這種發自內心的情緒--驚歎--更加微妙、深刻且久遠。
不過即使是科學家,也會因為比較醉心於這個世界和自己的利益,對最初接觸方程式的時刻興趣缺缺,自然不再對方程式心生讚歎。的確,我們會對自己太熟悉的工具或物件,變得不再驚奇。方程式可能變成看起來只是另一套隨處可得的工具,或我們基於義務必須學習的繁重工作。
馬克吐溫(Mark Twain)在《密西西比河上的生活》(Life on the Mississippi)一書中寫道,經驗太老道的領航員往往會經歷一段讓人懊悔的轉化過程。當他們對研判河水的水紋愈來愈駕輕就熟,同時似乎也愈來愈無法領略河川的美和詩意。河流的特色,一根浮木、水面上一道歪斜的水痕、一小片漣漪,曾經激起驚奇和讚歎之情,卻愈來愈變得只有在利用儀器進行領航的時候才有意義。類似的現象也出現在方程式的情況。
但偉大的科學家往往仍會對前人的科學突破,驚歎不已。物理學家威爾切克(Frank Wilczek)曾經撰寫一系列文章,討論表述牛頓第二運動定律的一次方程式F=ma,稱這個方程式為「古典力學的靈魂」,表達了極盡而適當的推崇之意。物理學家和宇宙論者錢卓塞卡(Subrahmanyan Chandrasekhar)寫了一部專論,探討牛頓的《原理》一書(牛頓在這本書中提出他的第二運動定律),把這本書比喻為米開朗基羅(Michelangelo)在西斯汀教堂(Sistine Chapel)天花板上的畫作。而聆聽費曼(Richard Feynman)著名的《費曼物理學講義》(Lectures on Physics)的人,會發現費曼對他要教授給學生的方程式充滿毫不靦腆、油然而生的驚歎之情。這三位知識淵博的諾貝爾獎得主,都能不斷對這個世界和方程式感到驚奇,我們則透過方程式了解世界。
本書旨在說明,方程式遠不像看起來那樣只是簡單的工具。就像人類製造出來的其他東西,方程式有社會意義,能夠發揮文化力量。本書檢視了一些偉大的方程式,並簡單說明方程式的發現者、這些發現背後隱藏的不滿,以及那些方程式對我們世界的本質提出哪些看法。