購物比價找書網找車網
FindBook  
 有 6 項符合

AutoML 自動化機器學習:用 AutoKeras 超輕鬆打造高效能 AI 模型

的圖書
AutoML 自動化機器學習:用 AutoKeras 超輕鬆打造高效能 AI 模型 AutoML 自動化機器學習:用 AutoKeras 超輕鬆打造高效能 AI 模型

作者:Luis Sobrecueva / 譯者:許珮瑩 
出版社:旗標科技股份有限公司
出版日期:2021-12-31
語言:繁體書   
圖書介紹 - 資料來源:博客來   評分:
圖書名稱:AutoML 自動化機器學習:用 AutoKeras 超輕鬆打造高效能 AI 模型

內容簡介

  有了三個臭皮匠,何必每次堅持找個諸葛亮?
 
  任何人都能運用深度學習(DL)嗎?AutoML(自動化機器學習)已經遍地開花,各大企業諸如 Google、Microsoft、Amazon、IBM、SAS 等都推出了自己的 AutoML 服務,讓使用者不必具備專業領域知識,也能快速打造出自己的 AI 模型。換言之,AutoML 徹底降低了 「AI 落地」的門檻。
 
  AutoML不能取代資料科學家,卻能大大省下你試驗機器學習模型的時間與痛苦。當你的朋友還在興致沖沖算數學時,你說不定早就端出了可投入實用的高效能模型。
 
  而什麼是 AutoKeras?這是一套完全開源的 Python AutoML 套件,以 Tensorflow 2 為基礎、運用創新的『高效神經網路架構搜尋』(ENAS)來實現自動化建模。AutoKeras 對於影像、文字、時間序列或一般結構化資料的預測都提供了內建類別,甚至會加上資料預處理功能,使你只需用短短幾行程式碼便能打造出成效優異的 DL 模型,還不必接觸高深的數學。
 
  就連經驗豐富的專家也能受惠:利用 AutoKeras 快速產生候選模型,好做為進一步改良的參考,並將更多寶貴的時間投注在資料清洗與特徵工程上。
 
  從此向困難、令人困惑的建模過程說拜拜,跨入深度學習的門檻從未如此之低;有了 AutoKeras,任何人都能駕馭 AI 的威力來解決真實世界的問題。 
 
本書特色
 
  ★ 免懂數學免瞎忙!不必再被迫學數學,就能輕鬆將 AI 運用在真實世界
  ★ 什麼是神經網路和深度學習?何謂 CNN 與 RNN?用淺顯易懂的方式理解其運作原理
  ★ 只要寫短短幾行 Python 程式,就能打造出強效深度學習模型,省時省力又好用
  ★ 無須透過複雜的 Keras API 就能使用諸如 ResNet、Xception、EfficientNet、Transformer、BERT、LStM、GRU 等知名模型架構
  ★ 提供了使用真實資料集的豐富實作範例,從圖像、文字、時間序列到一般結構化資料的預測一應俱全
  ★ 運用內建的 AutoModel 類別針對多模態 (multi-model) 資料建立多任務 (multi-task) 自訂模型
  ★ 利用 TensorBoard 或 ClearML 將你的模型訓練過程圖形化,更容易比較訓練成效和分享
  ★ 附 notebook/py 範例程式、Google Colab 及本機安裝教學,包括如何安裝 CUDA GPU 支援
  ★ 加值贈送:運用 2021 年新推出的輕量級 AutoML 套件 Flaml 來預測結構化資料!
 

作者介紹

作者簡介
 
Luis Sobrecueva
 
  Luis Sobrecueva 是有二十年資歷的軟體工程師,目前任職於西班牙叫車服務公司 Cabify,並致力於參與 OpenAI 及 AutoKeras 等機器學習/深度學習開源專案的開發。
 
 

目錄

AutoKeras 基礎篇
 
Chapter 1 AutoML 入門
  1-1 標準 ML 工作流程的深度剖析
  1-2 什麼是 AutoML?
  1-3 AutoML 的種類
  1-4 AutoML 工具
  1-5 總結
 
Chapter 2 開始使用 AutoKeras ──第一個自動化 DL 範例
  2-1 什麼是深度學習?
  2-2 什麼是神經網路?它如何學習?
  2-3 深度學習模型如何學習?
  2-4 為何選擇 AutoKeras?
  2-5 安裝AutoKeras
  2-6 Hello MNIST:執行我們的第一個 AutoKeras 實驗──建立圖像分類器
  2-7 建置圖像迴歸器
  2-8 總結
 
Chapter 3 了解 AutoKeras 對於自動化 DL 流程的資料預處理
  3-1 了解張量 (tensors)
  3-2 準備可以傳入深度學習模型的資料
  3-3 切割資料集以用於訓練及評估.
  3-4 總結
 
AutoKeras 實踐篇
 
Chapter 4 運用 AutoKeras 進行圖像的分類與迴歸
  4-1 理解卷積神經網路 (CNN)
  4-2 CNN 與傳統神經網路的差異
  4-3 建立 CIFAR-10 圖像分類器
  4-4 自訂模型架構
  4-5 建立可推斷人物年齡的圖像迴歸模型
  4-6 總結
 
Chapter 5 運用 AutoKeras 進行文本、情感、主題的分類與迴歸
  5-1 文本資料處理
  5-2 不同網路層用於文本資料處理的差異
  5-3 打造垃圾信件偵測器
  5-4 用電影評論來預測評分
  5-5 理解情感分析 (sentiment analysis)
  5-6 理解主題分類
  5-7 根據網路文章判定討論群組類型
  5-8 總結
 
Chapter 6 運用 AutoKeras 進行結構化資料的分類與迴歸
  6-1 理解結構化資料
  6-2 打造結構化分類器預測船難生還者
  6-3 打造結構化分類器預測信用卡詐欺
  6-4 處理分類不平均的資料集
  6-5 打造結構化迴歸器預測房價
  6-6 打造結構化迴歸器預測共享單車租用人次
  6-7 總結
 
Chapter 7 運用 AutoKeras 進行時間序列預測
  7-1 理解 RNN 的改良版
  7-2 單變量時間序列:氣溫預測
  7-3 多變量時間序列資料預測
  7-4 總結
 
AutoKeras 進階篇
 
Chapter 8 自訂 AutoModel 複合模型並處理多重任務
  8-1 理解多模態 (multi-model) 資料與多任務 (multi-task) 模型
  8-2 打造使用多模態資料的多任務模型
  8-3 打造能同時預測電影評分與情感的預測器
  8-4 打造能用兩種 CNN 網路模型預測分類的預測器
  8-5 總結
 
Chapter 9  AutoKeras 模型的匯出與訓練過程視覺化
  9-1 匯出、儲存並重新載入你的模型
  9-2 使用 TensorBoard將模型訓練過程視覺化
  9-3 使用 TensorBoard.dev 來對外分享模型訓練過程
  9-4 使用 ClearML 來視覺化並分享模型訓練過程
  9-5 總結
 
Bonus (電子書) 運用輕量級 AutoML 套件 Flaml 於結構化資料預測任務
  A-1 Flaml 分類器
  A-2 Flaml 迴歸器
  A-3 自訂訓練演算法、指標並保存模型
 

詳細資料

  • ISBN:9789863126973
  • 規格:平裝 / 400頁 / 17 x 23 x 2.4 cm / 普通級 / 單色印刷 / 初版
  • 出版地:台灣
贊助商廣告
 
金石堂 - 今日66折
後來,我告了報社老闆:一本直擊新聞製造內幕的前總編輯回憶錄
作者:大衛.希門內斯
出版社:木馬文化事業有限公司
出版日期:2021-12-08
66折: $ 277 
金石堂 - 今日66折
爸媽不用逼的高效讀書法:哈佛、史丹佛、耶魯大學實證,不用刻意努力也能提高成績。
作者:菊池洋匡
出版社:大是文化有限公司
出版日期:2022-08-31
66折: $ 238 
金石堂 - 今日66折
先知:中英文收藏
作者:紀伯侖
出版社:木馬文化事業有限公司
出版日期:2014-07-02
66折: $ 185 
金石堂 - 今日66折
榮格與史坦納:靈性心理學的曙光
66折: $ 508 
 
金石堂 - 暢銷排行榜
NO猥婦NO LIFE!【黑條修正】
作者:chin
出版社:未來數位有限公司
出版日期:2024-10-30
$ 277 
金石堂 - 暢銷排行榜
江晨恩醫師心血管診療室:從日常護心、逆轉三高到精準治療,超前部署,遠離心血管疾病
作者:江晨恩
出版社:遠見天下文化出版股份有限公司
出版日期:2024-04-30
$ 379 
Taaze 讀冊生活 - 暢銷排行榜
【1書+1日記】3分鐘未來日記:寫下的願望真的都實現了!
作者:山田弘美、濱田真由美
出版社:方智出版
出版日期:2021-11-01
$ 252 
金石堂 - 暢銷排行榜
特殊傳說Ⅲ vol.09
作者:護玄
出版社:蓋亞文化有限公司
出版日期:2024-10-16
$ 236 
 
博客來 - 新書排行榜
滿洲鴉片小隊(06)網路限定版
$ 170 
金石堂 - 新書排行榜
午夜的肌膚之親 (首刷限定版) 03
作者:
出版社:東立出版社
出版日期:2024-11-13
$ 181 
博客來 - 新書排行榜
叛逆玩家 01
$ 252 
金石堂 - 新書排行榜
辣妹因為懲罰遊戲才向我這個邊緣人告白,但顯然是真心愛上我了 (首刷限定版) 08
作者:結石
出版社:東立出版社
出版日期:2024-12-31
$ 247 
 

©2024 FindBook.com.tw -  購物比價  找書網  找車網  服務條款  隱私權政策