這是一本紮實與精準的教科書,力圖呈現微積分的驚心動魄與美。微積分的求切線斜率與求面積問題,一舉解決於相對容易的微分正逆演算。微分的正算解決了函數的遞增、遞減、臨界點、極值、凹口向上、凹口向下、反曲點、函數圖形的樣貌、泰勒展式;而微分的逆算 ( 不定積分 ) 解決了求面積問題與解微分方程的問題等。
微積分可用一個口訣來描寫:一法二念二義一理。一法就是一個方法,指的是本義的無窮步驟之分析與綜合法 ( 即無窮步驟的分割與連續求和 );二念就是兩個概念,即極限與無窮小量;二義就是兩個定義,即微分與積分的定義;一理就是一個定理,即微積分學根本定理,它是連結微分與積分的橋樑,以四兩撥千斤的巧妙,解決求面積的千古難題。
微積分是整個近代科學與工藝的基礎。若沒有微積分,就沒有物理學,沒有電磁學,沒有近代的科學革命,更沒有現代的電腦資訊文明。學習微積分雖然有點困難,但是努力用心去學,太值得了。深信天下沒有學不會的東西。
微積分可能是每一位初學者第一次接觸到的最抽象,也最具挑戰性的數學,因為它結結實實遇到了「無窮」,落實於取極限的操作或無窮小量的論述法。「無窮」讓微積分具有深度,困難且迷人。本書願盡所能幫助讀者克服這個「無窮」的難關。「大道無門,千差有路,透得此關,乾坤獨步」,加油!