第一部分 基礎理論
Chapter 01 深度學習簡介
1.1 深度學習
1.2 神經網路的發展
1.3 深度學習的應用
1.4 常用的數學知識和機器學習演算法
1.5 PyTorch 簡介
1.5.1 PyTorch 介紹
1.5.2 使用 PyTorch 的公司
1.5.3 PyTorch API
1.5.4 為什麼選擇 Python 語言
1.5.5 Python 語言的特點
1.6 常用的機器學習、深度學習開源框架
1.7 其他常用的模組庫
1.8 深度學習常用名詞
Chapter 02 PyTorch 環境安裝
2.1 基於 Ubuntu 環境的安裝
2.1.1 安裝 Anaconda
2.1.2 設定 Anaconda
2.2 Conda 命令安裝 PyTorch
2.3 pip 命令安裝 PyTorch
2.4 設定CUDA
Chapter 03 PyTorch 基礎知識
3.1 張量(Tensor)
3.2 數學操作
3.3 數理統計
3.4 比較操作
Chapter 04 簡單案例入門
4.1 線性迴歸
4.2 邏輯迴歸
Chapter 05 前饋神經網路
5.1 實作前饋神經網路
5.2 資料集
5.3 卷積層
5.4 Functional 函數
5.5 最佳化演算法
5.6 自動求導機制
5.7 保存和載入模型
5.8 GPU 加速運算
Chapter 06 PyTorch 視覺化工具
6.1 Visdom 介紹
6.2 Visdom 基本概念
6.2.1 Panes(窗格)
6.2.2 Environments(環境)
6.2.3 State(狀態)
6.3 安裝 Visdom
6.4 視覺化介面
6.4.1 Python 函數屬性存取技巧
6.4.2 vis.text
6.4.3 vis.image
6.4.4 vis.scatter
6.4.5 vis.line
6.4.6 vis.stem
6.4.7 vis.heatmap
6.4.8 vis.bar
6.4.9 vis.histogram
6.4.10 vis.boxplot
6.4.11 vis.surf
6.4.12 vis.contour
6.4.13 vis.mesh
6.4.14 vis.svg
第二部分 實戰應用
Chapter 07 卷積神經網路
7.1 卷積層
7.2 池化層
7.3 經典的卷積神經網路
7.3.1 LeNet-5 神經網路結構
7.3.2 ImageNet-2010 網路結構
7.3.3 VGGNet 網路結構
7.3.4 GoogLeNet 網路結構
7.3.5 ResNet 網路結構
7.4 卷積神經網路案例
7.5 深度殘差模型案例
Chapter 08 遞歸神經網路簡介
8.1 遞歸神經網路模型結構
8.2 不同類型的 RNN
8.3 LSTM 結構的具體解析
8.4 LSTM 的變體
8.5 遞歸神經網路的實作
8.5.1 遞歸神經網路案例
8.5.2 雙向 RNN 案例
Chapter 09 自編碼模型
Chapter 10 生成對抗網路
10.1 DCGAN 原理
10.2 GAN 生成對抗網路實例
Chapter 11 Seq2seq 自然語言處理
11.1 Seq2seq 自然語言處理簡介
11.2 Seq2seq 自然語言處理案例
Chapter 12 利用 PyTorch 實作量化交易
12.1 線性迴歸預測股價
12.2 前饋神經網路預測股價
12.3 遞歸神經網路預測股價