購物比價 | 找書網 | 找車網 |
FindBook |
有 6 項符合
輕鬆學會Google TensorFlow 2人工智慧深度學習實作開發(第三版)的圖書 |
輕鬆學會Google TensorFlow 2人工智慧深度學習實作開發(第三版) 作者:黃士嘉、林邑撰 出版社:博碩文化股份有限公司 出版日期:2021-02-04 語言:繁體書 |
圖書選購 |
型式 | 價格 | 供應商 | 所屬目錄 | 二手書 |
$ 444 |
TAAZE 讀冊生活 |
二手中文書 |
$ 490 |
蝦皮商城 |
Computers & Technology |
$ 545 |
TAAZE 讀冊生活 |
中文書 |
$ 558 |
博客來 |
人工智慧/機器學習 |
$ 558 |
蝦皮商城 |
Computers & Technology |
$ 558 |
五南文化廣場網路書店 |
科學科普 |
---|
圖書館借閱 |
國家圖書館 | 全國圖書書目資訊網 | 國立公共資訊圖書館 | 電子書服務平台 | MetaCat 跨館整合查詢 |
臺北市立圖書館 | 新北市立圖書館 | 基隆市公共圖書館 | 桃園市立圖書館 | 新竹縣公共圖書館 |
苗栗縣立圖書館 | 臺中市立圖書館 | 彰化縣公共圖書館 | 南投縣文化局 | 雲林縣公共圖書館 |
嘉義縣圖書館 | 臺南市立圖書館 | 高雄市立圖書館 | 屏東縣公共圖書館 | 宜蘭縣公共圖書館 |
花蓮縣文化局 | 臺東縣文化處 |
|
♔深入探討使用於自駕車的核心技術─先進駕駛輔助系統(ADAS)的物件偵測模型
♔運用TensorFlow 2和Keras API的強大靈活性和控制性
[ TensorFlow 2語法更簡潔 ]學習門檻較低,使初學者更容易上手
[ TensorFlow 2支援多個平台 ]可以在多種平台上訓練生成的網路模型
[ TensorFlow 2內建Keras高階API ]Keras與TensorFlow的相容性、方便性和效率更高
[ TensorFlow 2簡化API ]只保留tf.keras,清除較少人使用和重複的API
在人工智慧(AI)的時代,TensorFlow已經成為深度學習開發的主流程式庫,其功能強大、運算效率高、支援多個平台,造就了業界和學術界的廣泛使用。然而,TensorFlow 1的學習門檻高,對於剛入門的初學者來說相當難上手,針對這個問題,Google開發團隊推出TensorFlow 2。TensorFlow 2引入了Eager Execution動態圖模式、Keras高階API和tf.data等三個功能,讓學習門檻大幅降低。本書使用最新的TensorFlow 2深度學習套件,並透過十三個章節的內容,讓讀者同時學習到理論與實務應用。
【本書精彩內容】
◎利用TensorFlow Keras API,並能充分理解使用簡潔指令、自由組合且容易擴展的模塊化API的優勢。
◎利用tf.data資料輸入管道,速度更快、更簡單。
◎學習TensorFlow高階技巧:客製化網路層、損失函數、指標函數和回調函數。
◎學習TensorBoard高階技巧:TensorBoard低階API和超參數調校工具。
◎使用TensorFlow Datasets資料集平台,更方便下載和使用。
◎使用TensorFlow Hub開放預訓練模型平台,更方便搭建和使用預訓練權重。
◎了解神經網路反向傳遞的原理。
◎了解及實作全連接神經網路。
◎了解及實作卷積神經網路。
◎了解及實作遷移學習任務。
◎掌握訓練網路的技巧:權重初始化的重要性、權重正規化、Dropout、Batch Normalization。
◎運用深度學習經典網路架構:LeNet、AlexNet、VGG、GoogLeNet和ResNet。
◎生成模型:AE、VAE、GAN、WGAN、WGAN-GP全面解說和實作。
◎了解R-CNN、Fast R-CNN、Faster R-CNN、YOLO v1、SSD、YOLO v2、FPN、RetinaNet、Mask R-CNN、YOLO v3、CornetNet、CFF-SSD 和DSNet等代表性的物件偵測架構。
◎實現YOLO v3物件偵測方法。
作者簡介:
黃士嘉
【經歷】
◎國立臺北科技大學電子工程系教授
◎加拿大安大略理工大學國際客座教授
◎IEEE Sensors Journal國際期刊編輯
◎IEEE BigData Congress國際會議主席
◎IEEE CloudCom Conference國際會議主席
【獲獎】
◎經濟部第5屆國家產業創新獎
◎ACM臺灣分會,李國鼎青年研究獎
◎國立臺北科技大學電資學院,院傑出研究獎
◎國立臺北科技大學,校傑出研究獎
◎國立臺北科技大學,Dr.Shechtman年輕學者獎
林邑撰
【學歷】
◎國立臺北科技大學電子工程系碩士
【經歷】
◎神基科技 AI工程師
◎工研院 特約深度學習講師
|