第一章 複習類神經網路
第二章 自然語言與字詞的分散式表示
第三章 word2vec
第四章 word2vec的高速化
第五章 遞歸神經網路(RNN)
第六章 含閘門的RNN
第七章 使用RNN產生文章
第八章 Attention
附錄A sigmoid函數與tanh函數的微分
附錄B 啟用WordNet
附錄C GRU
購物比價 | 找書網 | 找車網 |
FindBook |
有 8 項符合
Deep Learning 2︰用Python進行自然語言處理的基礎理論實作的圖書 |
最新圖書評論 - | 目前有 4 則評論,查看更多評論 |
|
圖書選購 |
型式 | 價格 | 供應商 | 所屬目錄 | 二手書 |
$ 410 |
TAAZE 讀冊生活 |
二手中文書 |
$ 537 |
博客來 |
人工智慧/機器學習 |
$ 537 |
樂天書城 |
Python |
$ 544 |
momo購物網 |
Python |
$ 612 |
誠品網路書店 |
程式語言 |
$ 612 |
蝦皮商城 |
Computers & Technology |
$ 646 |
TAAZE 讀冊生活 |
中文書 |
$ 646 |
iRead灰熊愛讀書 |
程式語言 |
---|
圖書館借閱 |
國家圖書館 | 全國圖書書目資訊網 | 國立公共資訊圖書館 | 電子書服務平台 | MetaCat 跨館整合查詢 |
臺北市立圖書館 | 新北市立圖書館 | 基隆市公共圖書館 | 桃園市立圖書館 | 新竹縣公共圖書館 |
苗栗縣立圖書館 | 臺中市立圖書館 | 彰化縣公共圖書館 | 南投縣文化局 | 雲林縣公共圖書館 |
嘉義縣圖書館 | 臺南市立圖書館 | 高雄市立圖書館 | 屏東縣公共圖書館 | 宜蘭縣公共圖書館 |
花蓮縣文化局 | 臺東縣文化處 |
|
本書是《Deep Learning : 用Python進行深度學習的基礎理論實作》的續篇,將延續上一本書,繼續介紹與深度學習有關的技術。本書尤其偏重在自然語言處理及時間序列資料處理上,使用深度學習,挑戰各式各樣的問題。和上一本著作一樣,以「從零開始建構」為概念,詳盡介紹與深度學習有關的先進技術。
簡單來說,自然語言處理是指,讓電腦瞭解我們平常說話內容的技術。事實上,這種自然語言處理技術已經大大改變了我們的生活。在網頁搜尋、機械翻譯、語音助理等深深影響世界的技術根基中,已經使用了自然語言處理技術。本書把重點放在自然語言處理及時間序列資料處理上,學習在深度學習中,十分重要的技術。具體而言是指,word2vec、RNN、LSTM、GRU、seq2seq、Attention等技術。本書盡量使用淺顯易懂的說明,解說這些技術,並透過實際操作,確認你是否理解。此外,本書希望藉由實驗,讓你實際感受到這些技術的可能性。
| |||
| |||
| |||
|
|