Chapter 1|開始接觸類神經網路
類神經網路是什麼東西?先來比較跟其他機器學習演算法的差異,再以圖片、簡單的數學式解說類神經網路的結構與能夠做到哪些事情。
Chapter 2|學習正向傳播
解說構成感知器類神經網路的單純演算法是如何進行運算,舉判別圖像尺寸為例,學習從輸入值到輸出值依序計算的「正向傳播」。
Chapter 3|學習反向傳播
說明在類神經網路上,如何求得適當的權重與偏差。使用微分更新權重與偏差,盡可能減少「誤差」,但正攻法的計算相當麻煩,因此我們會採用簡化計算的「誤差反向傳播法」。
Chapter 4|學習卷積類神經網路
學會類神經網路的基本原理後,接著學習使用卷積類神經網路處理圖像,舉出卷積類神經網路的特有機制、運算,並說明權重、偏差的更新方法。
Chapter 5|實作類神經網路
根據前面章節學到的類神經網路計算方法, 使用Python編寫程式。以Chapter 2、3 出現的基本類神經網路,實作圖像的尺寸判定;以Chapter 4出現的卷積類神經網路實作手寫文字辨識。
Appendix
收錄Chapter 1 ∼ 5未能詳細解說的數學知識、Python程式設計的環境設置、Python與NumPy的簡易說明。