Chapter 0 Python與機器學習
0-1 Python發展與編寫環境
0-2 機器學習
0-3 機器學習使用Python
0-4 基礎數學與Python實作
0-5 小結
綜合範例
Chapter 1 數據前處理
1-1 數據類型
1-2 遺漏值
1-3 切割數據集
1-4 異常值
1-5 選取重要特徵
1-6 小結
綜合範例
Chapter 2 監督式學習:迴歸
2-1 線性迴歸
2-2 評估迴歸模型的效能
2-3 正規化的迴歸
2-4 處理非線性關係
2-5 小結
綜合範例
Chapter 3 監督式學習:分類
3-1 迴歸vs分類
3-2 評估分類器的效能
3-3 邏輯斯迴歸
3-4 支援向量機
3-5 簡單貝氏分類器
3-6 決策樹
3-7 k最近鄰
3-8 小結
綜合範例
Chapter 4 模型擬合、評估與超參數調校
4-1 工作流程管道化
4-2 過擬合與欠擬合
4-3 評估模型效能
4-4 調校超參數
4-5 處理類別不平衡
4-6 小結
綜合範例
Chapter 5 非監督式學習:降維與分群
5-1 主成份分析降維
5-2 k-means分群
5-3 階層式分群
5-4 DBSCAN分群
5-5 鄰近傳播分群
5-6 小結
綜合範例
Chapter 6 集成學習
6.1 以袋裝法集思廣益
6.2 以提升法互補有無
6.3 以堆疊法兼容並蓄
Chapter 7 機器學習應用
7.1 自然語言處理
7.2 序列資料處理