※著重理論、統計與方法的結合。適合社會科學與自然科學研究使用。
※提供許多實證Meta分析的範例,讓讀者實際操作分析,深入體會Meta研究的程序與應用
※因應社會科學研究特性,作者親自設計「Excel程式」供讀者做Meta分析。
※新增Meta迴歸實作範例,使用最新版本CMA 3.0。
※隨書附贈光碟內容:1.本書CMA範例 2.本書以Excel操作Meta實例
科學是一門累積的學習課程,但在資料搜尋過程中,常會因為研究者、樣本、時間、地區、研究方法、研究程序的不同,導致相似的研究方向卻有不同的研究結果,令人有「眾說紛紜,莫衷一是」的矛盾感。再加上傳統的文獻探討法多仰賴研究者的經驗、邏輯思考加上主觀的判斷,在選擇文獻的過程當中,常會下意識選擇有利於己、忽視不利於己的研究的相關文獻,也常根據直觀的想法,主觀地統整與下結論,而讓最後的研究結果產生了偏頗。
為解決上述盲點,Metaanalysis於是誕生了,它嘗試用科學的、系統的、客觀的方法來結合相關的研究數據,是一種量化的系統性文獻探討法。迄今,Metaanalysis已在基礎研究、生物學、醫學、心理學、社會學、刑事司法、金融和經濟學、政治學、市場營銷、生態學、教育學和遺傳學等領域,開枝散葉。
Metaanalysis不但經濟實惠,且內外效度都高,值得大家來學習。
作者簡介:
張紹勳
學歷:國立政治大學資訊管理博士
現職:國立彰化師大專任教授
經歷:致理技術專任副教授
研究助理
張任坊
學歷:國立海洋大學商船系
現職:長榮海運三副
張博一
學歷:國立中央大學通訊工程所
現職:柏格科技公司工程師
章節試閱
第1章 統合分析(Metaanalysis,MA) 法
相較於傳統的資料統整方法,統合分析整合多個符合研究主題變數的樣本進行整合,可增強統計的檢定力、解釋力及推論性(Conn & Armer, 1996),提升整合研究的品質,並提高研究結論的效度,更具系統結構性及明確性。
統計學來看,統合分析(Metaanalysis, MA),又稱後設分析、整合分析、綜合分析、元分析、薈萃分析,是指將多個個別研究結果(次級資料)整合在一起的統計方法。就用途而言,它是系統性文獻回顧的新方法。文獻回顧的傳統方法是敘事式的,由作者自行挑選覺得重要的前人研究,當各研究結論衝突時,由作者自行判斷哪一種結論較具價值。但統合分析有其章法,依據科學方法來組合這些個別研究的效果量,成為一個合理的因果推論模型。Meta 分析例子:運動是否可以改善癌症相關疲倦(cancerrelated fatigue, CRF) 的問題?
Meta 分析旨在將學術界歷年針對某個主題所做的實徵研究運用系統性的歸納分析及統計量化方法,探究變數之間的關係模式,以改良敘述性綜述(review) 僅具質性論述的不足(Glass, McGaw, & Smith, 1981),可避免敘述性綜述因為研究者個人見解而可能過於主觀之缺失。
相對地,AI 領域中,機器學習的Lasso 推論模型,則是針對感測器所取樣的巨量初級(primary) 資料,對眾多外在干擾變數加以「控制」之後,再做因果推論(請見作者《機器學習》一書)。
由於研究風氣盛行,很多國家或是研究單位多以論文作為升遷或是教職升等的重要指標,因此每年全世界發表的論文數量年年增加;預期未來每年發表的論文篇數將會越來越多,如何在這麼多的研究論文中快速獲取結論,是資訊爆炸時代中很重要的議題。誠如Glass(1977) 所說:「雖然沒有一篇研究是完美的,但是我們應該合理的相信透過整合這些不完美的研究,也能夠歸結出一個合理的結論」;因而有了統合分析(Metaanalysis) 的興起。
統合分析(Metaanalysis) 的定義
原意是「more comprehensive」,也就是對一系列研究的結果,做更加廣泛全面的研究,即「分析的再分析」。利用系統性的文獻回顧,將一群已完成且具有相關研究問題的研究結果,以定量的統計方法分析評估,以總結出一個研究結論。統合分析的核心理念是:「既然個別的初級研究,無法找出令人信服的結論,那麼就把大量相
關的初級研究放在一起,進一步進行統計分析,從而找出較令人信服的結論」。統合分析的理論基礎在解決實證研究之研究結果不一致情況(馬信行,2007);此一定量的統計方法將一群已完成且具有相關研究問題的研究結果分析評估,以總結出一個研究結論。
第1章 統合分析(Metaanalysis,MA) 法
相較於傳統的資料統整方法,統合分析整合多個符合研究主題變數的樣本進行整合,可增強統計的檢定力、解釋力及推論性(Conn & Armer, 1996),提升整合研究的品質,並提高研究結論的效度,更具系統結構性及明確性。
統計學來看,統合分析(Metaanalysis, MA),又稱後設分析、整合分析、綜合分析、元分析、薈萃分析,是指將多個個別研究結果(次級資料)整合在一起的統計方法。就用途而言,它是系統性文獻回顧的新方法。文獻回顧的傳統方法是敘事式的,由作者自行挑選覺得重要的前人研究,當各研究結...
作者序
Comprehensive Metaanalysis(CMA)是Meta分析最出名的統計軟體,CMA v3新推Meta分析,除有傳統常用效果量(ES)分析,還新增Meta迴歸、一個(以下)共變數對「xy」的調節作用,CMA值得大家學習。。
對照初級資料統計,次級資料「統合分析(Metaanalysis)」是另一數據科學的典範。所謂效果量是指在Meta分析的研究過程上,所分析的每一個研究的實驗處理效果的大小,也就是每一個實驗設計中接受實驗處理的實驗組與控制組之間的差別。為了統計處理,這些實驗處理結果的差別需先經過標準化的處理,才能進行比較與合計。所謂標準化的處理就是把實驗處理的實驗組(吃新藥)與控制組(吃安慰劑)之間的差別除以控制組的標準差(standard deviation)。
效果量的值可以代表就某一項研究主題而言,實驗組和控制組之間差異的大小,值愈大,代表實驗處理的功效愈大;值愈小,代表實驗處理的功效愈小。
迄今,Metaanalysis已在:基礎研究、生物學、醫學、心理學、社會學、刑事司法、金融和經濟學、政治學、市場營銷、生態學、教育學和遺傳學等領域,開枝散葉。
Meta分析使研究者可以將數項個別研究的結果合併為一個統合分析,以提供對所關注效果的整體估計。對於希望使用CMA進行Meta分析,並展示瞭分析步驟、解釋Meta分析(如何產生高度靈活的圖形顯示;如何使用Meta迴歸;如何檢查發表偏誤;如何進行個別研究初級數據的Meta分析;如何進行Meta迴歸分析;以及間接證據之Network Metaanalysis),本書是不可缺少的顯學。
由於科學是一門累積的學習課程,但在資料搜尋過程中,我們常會發現因為研究者、樣本、時間、地區、研究方法、研究程序的不同,導致相似的研究方向卻有不同的研究結果,令人有「眾說紛紜,莫衷一是」的矛盾感。再加上傳統的文獻探討法多仰賴研究者的經驗、邏輯思考加上主觀的判斷,在選擇文獻的過程當中,常會下意識的選擇有利於己、忽視不利於己之研究的相關文獻;亦常根據直觀的想法,主觀的統整與下結論,而讓最後的研究結果產生了偏頗。
為解決上述盲點,Metaanalysis於是誕生了,它嘗試用科學的、系統的、客觀的方法來結合相關的研究數據,是一種量化的系統性文獻探討法。Metaanalysis不但經濟實惠,且內外效度都高,值得大家來學習。
畢竟工欲善其事,必先利其器。研究者除了要精通自己領域的「理論」基礎外,正確選用創新性之「研究法」及「統計」技術(即Stata及軟體實作),三者間如何有效整合應用,更是成為頂尖研究者不可缺乏的基本功夫。本書內容,著重理論、統計及方法三者的結合;適合自然科學及社會科學的研究者來研讀。
本書中附有Excel、CMA之Meta分析的範例及ES單位轉換的Excel程式,利於讀入Meta各種不同格式(4變數、6變數、2變數、3變數),易用易懂,使得讀者能迅速執行實證分析,進而理解Meta analysis報表意義的解釋。此外,為了讓各位能精熟Meta,本書提供許多實證Meta分析的範例,讓讀者可以實際操作分析,進而深入體會Meta研究的程序與應用。
為符合社會科學的研究特性,本書所附光碟中,作者設計「Excel程式」供讀者做Meta分析;能將每篇個別研究之統計值(卡方、t值、F值、Pearson's r值,Cohen's d值),自動「單位轉換」成其對應的效果量,並自動執行異質性Q檢定、發表偏誤檢定,最後一併算出「平均效果量」及其顯著性檢定(Zc的顯著性檢定、Winner’t顯著性)。「Excel公式轉換」亦附有各種效果量的轉換,利於coding個別研究之不同資料格式。
張紹勳 敬上
Comprehensive Metaanalysis(CMA)是Meta分析最出名的統計軟體,CMA v3新推Meta分析,除有傳統常用效果量(ES)分析,還新增Meta迴歸、一個(以下)共變數對「xy」的調節作用,CMA值得大家學習。。
對照初級資料統計,次級資料「統合分析(Metaanalysis)」是另一數據科學的典範。所謂效果量是指在Meta分析的研究過程上,所分析的每一個研究的實驗處理效果的大小,也就是每一個實驗設計中接受實驗處理的實驗組與控制組之間的差別。為了統計處理,這些實驗處理結果的差別需先經過標準化的處理,才能進行比較與合計。所謂標準化的處理就是把實驗...
目錄
第1章 統合分析(Metaanalysis, MA)法
11 統合分析(MetaAnalysis)的起源
12 統合分析(MetaAnalysis)是什麽
13 統合分析(MetaAnalysis)之分析流程
14 統合分析(MetaAnalysis)的優缺點
15 Metaanalysis軟體
16 type I、type Ⅱ error及power
第2章 Meta效果量的轉換
21 Meta分析法之單位換算法
22 連續變數的Meta分析
23 發表偏誤(publication bias)分析
24 異質性分析
25 敏感度分析
26 類別變數之ES單位變換及其變異數估計法
27 Meta誤差組合法
28 Meta分析的信度與效度
第3章 理論模型、Meta研究設計
31 理論建構
32 研究設計與Meta分析
33 實證醫學
326實證醫學研究常用統計值
34 Meta分析法及假定(assmptions)
35 Meta分析之研究設計
第4章 本書Excel實作MetaAnalysis
41 實作Meta分析之程序
42 統計學回顧
43 本書Excel之Meta分析
44 Excel實作多重因果Meta:科技
第5章 生物醫學之研究法:觀察法及實驗法之效果量
51 統計vs.與實驗的關係
52 觀察法vs.實驗法
53 連續依變數之效果量(ES)常用的統計公式
54 Logistic迴歸:勝算比(OR)或稱為相對風險(RR)
第6章 CMA的(基本分析vs.迴歸分析):資料建檔、分析步驟、結果解說
61 Meta迴歸的建檔、分析步驟
62 Meta迴歸之結果解說:主效果「X→Y」+調節效果
第7章 CMA的Meta分析:(固定vs隨機)選搭(無共變vs.類別共變vs.連續共變數)
71 調節變數(moderator variable)是什麽
72 Meta迴歸:卡介苗(BCG)疫苗效果
73a 固定效果之Meta分析:卡介苗(BCG)疫苗效果
73b 隨機效果之Meta分析:卡介苗(BCG)疫苗效果
74 正向心理資本與幸福感(r,Zr型):Meta迴歸搭配類別型共變數
75 Meta分析:心理資本與主觀幸福感(r,Zr型):主效果+共變數的調節
附錄1:Z分配表
參考文獻
第1章 統合分析(Metaanalysis, MA)法
11 統合分析(MetaAnalysis)的起源
12 統合分析(MetaAnalysis)是什麽
13 統合分析(MetaAnalysis)之分析流程
14 統合分析(MetaAnalysis)的優缺點
15 Metaanalysis軟體
16 type I、type Ⅱ error及power
第2章 Meta效果量的轉換
21 Meta分析法之單位換算法
22 連續變數的Meta分析
23 發表偏誤(publication bias)分析
24 異質性分析
25 敏感度分析
26 類別變數之ES單位變換及其變異數估計法
27 Meta誤差組合法
28 Meta分析的信度與效度
第3章 理論模型...