在資訊爆炸、瞬息萬變的時代,消費者的一舉一動都能被記錄下來,如何從浩瀚似海的大數據中找到貼近消費者偏好的行銷手法,將個人的潛在偏好轉換為實質的購買行為,成為現代行銷人的重要課題。本書遵循理論、模型、預測、決策等四大步驟,以深入淺出的方式探討重要的個人化行銷議題,包括:
本書協助行銷學者從行銷的「原點」出發,進而展望行銷未來趨勢的變化。對於初次接觸行銷的學生,本書將是一個重要的行銷起步指南,避免你迷失在五花八門的行銷光炫世界中。而對於實務界人士而言,若能從書中的案例體會出行銷的精要,將足以發揮他山之石之效,達到「任」意行銷的境界。
.顧客價值管理
本書提出活躍性指標與顧客價值遷徙路徑等分析工具,預測每位顧客的顧客價值變化將愈趨活躍或沉寂,協助企業提早預防顧客流失的不利情況。
.產品推薦系統
面對已有大量交易紀錄的舊產品,本書建議先進行市場區隔,再進行產品關聯分析,強化購物籃分析的行銷意義。對於缺乏交易紀錄的新產品,則建議先解構成不同屬性水準的組合,再根據顧客個人的偏好結構,預測其購買新產品的可能性。
.顧客偏好預測
面對累積一定交易紀錄的舊顧客,本書建議採用區隔層次或個人層次的統計模型,融入貝氏統計的觀念,預測個別顧客對於產品屬性水準的偏好。再使用顧客分群與複製的觀念,根據舊顧客的偏好結構進行新顧客偏好預測,以利導入產品推薦系統。
天下沒有白吃的午餐,複雜的現象需要藉助深層的模式才得以彰顯,簡單的模型假設可能會造成錯誤的推導結果。目前業界對於大數據分析的認識仍止於初階的次數分析與關聯分析,但根據群眾資料的分析結果進行顧客個人的行為預測,準確度令人存疑。本書從顧客個人的角度出發,針對行銷問題的本質建立個人行為預測模型,以進行一對一行銷或網對網行銷,此為大數據行銷的真諦。