購物比價找書網找車網
FindBook
排序:
 
 有 1 項符合

Amaratunga

的圖書
EXPLORATION AND ANALYSIS OF DNA MICROARRAY AND PROTEIN ARRAY DATA
$ 980
EXPLORATION AND ANALYSIS OF DNA MICROARRAY AND PROTEIN ARRAY DATA
作者:AMARATUNGA 
出版社:JOHN WILEY & SONS,INC.
出版日期:2004-01-01
三民網路書店 三民網路書店 - 醫療保健  - 來源網頁  
圖書介紹看圖書介紹
圖書介紹 - 資料來源:三民網路書店   評分:
圖書名稱:EXPLORATION AND ANALYSIS OF DNA MICROARRAY AND PROTEIN ARRAY DATA
  • 圖書簡介

    A cutting-edge guide to the analysis of DNA microarray data
    Genomics is one of the major scientific revolutions of this century, and the use of microarrays to rapidly analyze numerous DNA samples has enabled scientists to make sense of mountains of genomic data through statistical analysis. Today, microarrays are being used in biomedical research to study such vital areas as a drug’s therapeutic value–or toxicity–and cancer-spreading patterns of gene activity.
    Exploration and Analysis of DNA Microarray and Protein Array Data answers the need for a comprehensive, cutting-edge overview of this important and emerging field. The authors, seasoned researchers with extensive experience in both industry and academia, effectively outline all phases of this revolutionary analytical technique, from the preprocessing to the analysis stage.
    Highlights of the text include:
    A review of basic molecular biology, followed by an introduction to microarrays and their preparation
    Chapters on processing scanned images and preprocessing microarray data
    Methods for identifying differentially expressed genes in comparative microarray experiments
    Discussions of gene and sample clustering and class prediction
    Extension of analysis methods to protein array data
    Numerous exercises for self-study as well as data sets and a useful collection of computational tools on the authors’ Web site make this important text a valuable resource for both students and professionals in the field.

  • 作者簡介

    DHAMMIKA AMARATUNGA, PhD, is a Senior Research Fellow in the Nonclinical Biostatistics Department at Johnson & Johnson Pharmaceutical Research & Development, LLC. He has a doctorate in statistics from Princeton University and has been working in the pharmaceutical industry for over fifteen years. His research interests include analysis of large multivariate data sets, particularly those generated by functional genomics research, robust and resistant statistical methods, linear and nonlinear modeling, and biostatistics.
    JAVIER CABRERA, PhD, is an Associate Professor in the Department of Statistics at Rutgers University. He has a doctorate in statistics from Princeton University and has over fifty publications in applied statistics. His research interests include DNA microarray, data mining of biopharmaceutical databases, computer vision, statistical computing and graphics, robustness, and biostatistics.

  • 名人/編輯推薦

    "...extremely well written...a comprehensive and up-to-date overview of this important field." (Journal of Environmental Quality, Jan/Feb 2005)
    "…an extensive overview of current microarray data analysis…" (Clinical Chemistry, November 2004)
    "The book would be useful to anyone studying or working with the DNA and protein arrays." (Annals of Biomedical Engineering, November 2004)
    “...presents an extensive series of computational, visual, and statistical tools that are being used for exploring and analyzing microarray data...” (Quarterly of Applied Mathematics, Vol. LXII, No. 1, March 2004)
    “...outlines methodologies for analyzing DNA microarrays and protein array data for industrial and academic applications...” (Genetic Engineering News, March 15, 2004)

  • 目次

    Preface.
    1 A Brief Introduction.
    1.1 A Note on Exploratory Data Analysis.
    1.2 Computing Considerations and Software.
    1.3 A Brief Outline of the Book.
    2 Genomics Basics.
    2.1 Genes.
    2.2 DNA.
    2.3 Gene Expression.
    2.4 Hybridization Assays and Other Laboratory Techniques.
    2.5 The Human Genome.
    2.6 Genome Variations and Their Consequences.
    2.7 Genomics.
    2.8 The Role of Genomics in Pharmaceutical Research.
    2.9 Proteins.
    2.10 Bioinformatics.
    Supplementary Reading.
    Exercises.
    3 Microarrays.
    3.1 Types of Microarray Experiments.
    3.1.1 Experiment Type 1: Tissue-Specific Gene Expression.
    3.1.2 Experiment Type 2: Developmental Genetics.
    3.1.3 Experiment Type 3: Genetic Diseases.
    3.1.4 Experiment Type 4: Complex Diseases.
    3.1.5 Experiment Type 5: Pharmacological Agents.
    3.1.6 Experiment Type 6: Plant Breeding.
    3.1.7 Experiment Type 7: Environmental Monitoring.
    3.2 A Very Simple Hypothetical Microarray Experiment.
    3.3 A Typical Microarray Experiment.
    3.3.1 Microarray Preparation.
    3.3.2 Sample Preparation.
    3.3.3 The Hybridization Step.
    3.3.4 Scanning the Microarray.
    3.3.5 Interpreting the Scanned Image.
    3.4 Multichannel cDNA Microarrays.
    3.5 Oligonucleotide Arrays.
    3.6 Bead-Based Arrays.
    3.7 Confirmation of Microarray Results.
    Supplementary Reading and Electronic References.
    Exercises.
    4 Processing the Scanned Image.
    4.1 Converting the Scanned Image to the Spotted Image.
    4.1.1 Gridding.
    4.1.2 Segmentation.
    4.1.3 Quantification.
    4.2 Quality Assessment.
    4.2.1 Visualizing the Spotted Image.
    4.2.2 Numerical Evaluation of Array Quality.
    4.2.3 Spatial Problems.
    4.2.4 Spatial Randomness.
    4.2.5 Quality Control of Arrays.
    4.2.6 Assessment of Spot Quality.
    4.3 Adjusting for Background.
    4.3.1 Estimating the Background.
    4.3.2 Adjusting for the Estimated Background.
    4.4 Expression Level Calculation for Two-Channel cDNA Microarrays.
    4.5 Expression Level Calculation for Oligonucleotide Arrays.
    4.5.1 The Average Difference.
    4.5.2 A Weighted Average Difference.
    4.5.3 Perfect Matches Only.
    4.5.4 Background Adjustment Approach.
    4.5.5 Model-Based Approach.
    4.5.6 Absent-Present Calls.
    Supplementary Reading.
    Exercises.
    5 Preprocessing Microarray Data.
    5.1 Logarithmic Transformation.
    5.2 Variance Stabilizing Transformations.
    5.3 Sources of Bias.
    5.4 Normalization.
    5.5 Intensity-Dependent Normalization.
    5.5.1 Smooth Function Normalization.
    5.5.2 Quantile Normalization.
    5.5.3 Normalization of Oligonucleotide Arrays.
    5.5.4 Normalization of Two-Channel Arrays.
    5.5.5 Spatial Normalization.
    5.5.6 Stagewise Normalization.
    5.6 Judging the Success of a Normalization.
    5.7 Outlier Identification.
    5.7.1 Nonresistant Rules for Outlier Identification.
    5.7.2 Resistant Rules for Outlier Identification.
    5.8 Assessing Replicate Array Quality.
    Exercises.
    6 Summarization.
    6.1 Replication.
    6.2 Technical Replicates.
    6.3 Biological Replicates.
    6.4 Experiments with Both Technical and Biological Replicates.
    6.5 Multiple Oligonucleotide Arrays.
    6.6 Estimating Fold Change in Two-Channel Experiments.
    6.7 Bayes Estimation of Fold Change.
    Exercises.
    7 Two-Group Comparative Experiments.
    7.1 Basics of Statistical Hypothesis Testing.
    7.2 Fold Changes.
    7.3 The Two-Sample t Test.
    7.4 Diagnostic Checks.
    7.5 Robust t Tests.
    7.6 Randomization Tests.
    7.7 The Mann–Whitney–Wilcoxon Rank Sum Test.
    7.8 Multiplicity.
    7.8.1 A Pragmatic Approach to the Issue of Multiplicity.
    7.8.2 Simple Multiplicity Adjustments.
    7.8.3 Sequential Multiplicity Adjustments.
    7.9 The False Discovery Rate.
    7.9.1 The Positive False Discovery Rate.
    7.10 Small Variance-Adjusted t Tests and SAM.
    7.10.1 Modifying the t Statistic.
    7.10.2 Assesing Significance with the SAM t Statistic.
    7.10.3 Strategies for Using SAM.
    7.10.4 An Empirical Bayes Framework.
    7.10.5 Understanding the SAM Adjustment.
    7.11 Conditional t.
    7.12 Borrowing Strength across Genes.
    7.12.1 Simple Methods.
    7.12.2 A Bayesian Model.
    7.13 Two-Channel Experiments.
    7.13.1 The Paired Sample t Test and SAM.
    7.13.2 Borrowing Strength via Hierarchical Modeling.
    Supplementary Reading.
    Exercises.
    8 Model-Based Inference and Experimental Design Considerations.
    8.1 The F Test.
    8.2 The Basic Linear Model.
    8.3 Fitting the Model in Two Stages.
    8.4 Multichannel Experiments.
    8.5 Experimental Design Considerations.
    8.5.1 Comparing Two Varieties with Two-Channel Microarrays.
    8.5.2 Comparing Multiple Varieties with Two-Channel Microarrays.
    8.5.3 Single-Channel Microarray Experiments.
    8.6 Miscellaneous Issues.
    Supplementary Reading.
    Exercises.
    9 Pattern Discovery.
    9.1 Initial Considerations.
    9.2 Cluster Analysis.
    9.2.1 Dissimilarity Measures and Similarity Measures.
    9.2.2 Guilt by Association.
    9.2.3 Hierarchical Clustering.
    9.2.4 Partitioning Methods.
    9.2.5 Model-Based Clustering.
    9.2.6 Chinese Restaurant Clustering.
    9.2.7 Discussion.
    9.3 Seeking Patterns Visually.
    9.3.1 Principal Components Analysis.
    9.3.2 Factor Analysis.
    9.3.3 Biplots.
    9.3.4 Spectral Map Analysis.
    9.3.5 Multidimensional Scaling.
    9.3.6 Projection Pursuit.
    9.3.7 Data Visualization with the Grand Tour and Projection Pursuit.
    9.4 Two-Way Clustering.
    9.4.1 Block Clustering.
    9.4.2 Gene Shaving.
    9.4.3 The Plaid Model.
    Software Notes.
    Supplementary Reading.
    Exercises.
    10 Class Prediction.
    10.1 Initial Considerations.
    10.1.1 Misclassification Rates.
    10.1.2 Reducing the Number of Classifiers.
    10.2 Linear Discriminant Analysis.
    10.3 Extensions of Fisher’s LDA.
    10.4 Nearest Neighbors.
    10.5 Recursive Partitioning.
    10.5.1 Classification Trees.
    10.5.2 Activity Region Finding.
    10.6 Neural Networks.
    10.7 Support Vector Machines.
    10.8 Integration of Genomic Information.
    10.8.1 Integration of Gene Expression Data and Molecular Structure Data.
    10.8.2 Pathway Inference.
    Software Notes.
    Supplementary Reading.
    Exercises.
    11 Protein Arrays.
    11.1 Introduction.
    11.2 Protein Array Experiments.
    11.3 Special Issues with Protein Arrays.
    11.4 Analysis.
    11.5 Using Antibody Antigen Arrays to Measure Protein Concentrations.
    Exercises.
    References.
    Author Index.
    Subject Index.

贊助商廣告
 
金石堂 - 今日66折
賽斯速成100有聲書第 3 輯
作者:王怡仁主講
出版社:賽斯文化
出版日期:2017-08-01
66折: $ 660 
金石堂 - 今日66折
賽斯書輕導讀有聲書第 4 輯
作者:王怡仁醫師主講
出版社:賽斯文化
出版日期:2019-07-01
66折: $ 871 
金石堂 - 今日66折
夢、進化與價值完成有聲書第3輯
作者:許添盛主講
出版社:賽斯文化
出版日期:2015-12-01
66折: $ 660 
金石堂 - 今日66折
未知的實相有聲書【第2輯】
作者:許添盛
出版社:賽斯文化
出版日期:2007-10-01
66折: $ 581 
 
博客來 - 暢銷排行榜
以貓貓之軀,讓宇宙完整
作者:四叉貓
出版社:大塊文化
出版日期:2025-01-22
$ 276 
金石堂 - 暢銷排行榜
黃仁勳傳:輝達創辦人如何打造全球最搶手的晶片
作者:史帝芬.維特
出版社:遠見天下文化出版股份有限公司
出版日期:2025-01-20
$ 395 
博客來 - 暢銷排行榜
我可能錯了:森林智者的最後一堂人生課
作者:比約恩.納提科.林德布勞 (Björn Natthiko Lindeblad, Caroline Bankler, Navid Modiri)
出版社:先覺
出版日期:2023-02-01
$ 355 
金石堂 - 暢銷排行榜
國中翰林新無敵自修國文一下{113學年}
作者:翰林編輯
出版社:翰林出版事業股份有限公司
出版日期:2024-12-30
$ 402 
 
博客來 - 新書排行榜
別對每件事都有反應2:不執著的練習
作者:枡野俊明
出版社:悅知文化
出版日期:2025-01-20
$ 260 
博客來 - 新書排行榜
少年的深淵(12)
出版日期:2025-01-22
$ 110 
博客來 - 新書排行榜
孤獨搖滾! 7 (首刷限定版)
出版日期:2025-01-20
$ 246 
博客來 - 新書排行榜
不時輕聲地以俄語遮羞的鄰座艾莉同學 5 (首刷限定版)
出版日期:2025-01-20
$ 212 
 

©2025 FindBook.com.tw -  購物比價  找書網  找車網  服務條款  隱私權政策