購物比價找書網找車網
FindBook
排序:
 
 有 1 項符合

XGBoost for Regression Predictive Modeling and Time Series Analysis: Learn how to build, evaluate, and deploy predictive models with expert guidance

的圖書
XGBoost for Regression Predictive Modeling and Time Series Analysis: Learn how to build, evaluate, and deploy predictive models with expert guidance
$ 2749
XGBoost for Regression Predictive Modeling and Time Series Analysis: Learn how to build, evaluate, and deploy predictive models with expert guidance
作者:Deka 
出版社:Packt Publishing
出版日期:2024-12-13
語言:英文   規格:平裝 / 308頁 / 23.5 x 19.05 x 1.65 cm / 普通級/ 初版
博客來 博客來 - 數學  - 來源網頁  
圖書介紹看圖書介紹
圖書介紹 - 資料來源:博客來   評分:
圖書名稱:XGBoost for Regression Predictive Modeling and Time Series Analysis: Learn how to build, evaluate, and deploy predictive models with expert guidance

內容簡介

Master the art of predictive modeling with XGBoost and gain hands-on experience in building powerful regression, classification, and time series models using the XGBoost Python API

Key Features:

- Get up and running with this quick-start guide to building a classifier using XGBoost

- Get an easy-to-follow, in-depth explanation of the XGBoost technical paper

- Leverage XGBoost for time series forecasting by using moving average, frequency, and window methods

- Purchase of the print or Kindle book includes a free PDF eBook

Book Description:

XGBoost offers a powerful solution for regression and time series analysis, enabling you to build accurate and efficient predictive models. In this book, the authors draw on their combined experience of 40+ years in the semiconductor industry to help you harness the full potential of XGBoost, from understanding its core concepts to implementing real-world applications.

As you progress, you’ll get to grips with the XGBoost algorithm, including its mathematical underpinnings and its advantages over other ensemble methods. You’ll learn when to choose XGBoost over other predictive modeling techniques, and get hands-on guidance on implementing XGBoost using both the Python API and scikit-learn API. You’ll also get to grips with essential techniques for time series data, including feature engineering, handling lag features, encoding techniques, and evaluating model performance. A unique aspect of this book is the chapter on model interpretability, where you’ll use tools such as SHAP, LIME, ELI5, and Partial Dependence Plots (PDP) to understand your XGBoost models. Throughout the book, you’ll work through several hands-on exercises and real-world datasets.

By the end of this book, you’ll not only be building accurate models but will also be able to deploy and maintain them effectively, ensuring your solutions deliver real-world impact.

What You Will Learn:

- Build a strong, intuitive understanding of the XGBoost algorithm and its benefits

- Implement XGBoost using the Python API for practical applications

- Evaluate model performance using appropriate metrics

- Deploy XGBoost models into production environments

- Handle complex datasets and extract valuable insights

- Gain practical experience in feature engineering, feature selection, and categorical encoding

Who this book is for:

This book is for data scientists, machine learning practitioners, analysts, and professionals interested in predictive modeling and time series analysis. Basic coding knowledge and familiarity with Python, GitHub, and other DevOps tools are required.

Table of Contents

- An Overview of Machine Learning, Classification, and Regression

- XGBoost Quick Start Guide with an Iris Data Case Study

- Demystifying the XGBoost Paper

- Adding On to the Quick Start - Switching Out the Dataset with a Housing Data Case Study

- Classification and Regression Trees, Ensembles, and Deep Learning Models - What’s Best for Your Data?

- Data Cleaning, Imbalanced Data, and Other Data Problems

- Feature Engineering

- Encoding Techniques for Categorical Features

- Using XGBoost for Time Series Forecasting

- Model Interpretability, Explainability, and Feature Importance with XGBoost

- Metrics for Model Evaluations and Comparisons

- Managing a Feature Engineering Pipeline in Training and Inference

- Deploying Your XGBoost Model

 

詳細資料

  • ISBN:9781805123057
  • 規格:平裝 / 308頁 / 23.5 x 19.05 x 1.65 cm / 普通級 / 初版
  • 出版地:美國
贊助商廣告
 
 
金石堂 - 暢銷排行榜
超圖解數位行銷(2版)
作者:戴國良
出版社:五南圖書出版股份有限公司
出版日期:2024-07-28
$ 379 
金石堂 - 暢銷排行榜
藥師少女的獨語(14)【特裝版】
作者:日向夏
出版社:台灣角川股份有限公司
出版日期:2024-12-09
$ 850 
博客來 - 暢銷排行榜
善意溝通:怡慧老師的0負評暖心說話課【博客來獨家版.附「善意習慣」21天實踐計畫書】
作者:宋怡慧
出版社:平安文化
出版日期:2024-12-02
$ 276 
Taaze 讀冊生活 - 暢銷排行榜
張忠謀自傳全集(上下冊)
作者:張忠謀
出版社:遠見天下文化出版股份有限公司
出版日期:2024-11-29
$ 869 
 
Taaze 讀冊生活 - 新書排行榜
LangChain 奇幻旅程:OpenAI x Gemini x 多模態應用開發指南
作者:柯克(Ko Ko)、陳葵懋 (Ian Chen)、Ryan Chung
出版社:博碩文化股份有限公司
出版日期:2024-10-15
$ 680 
金石堂 - 新書排行榜
我們不可能成為戀人!絕對不行。 (※似乎可行?) (首刷限定版) 06
作者:musshu
出版社:東立出版社
出版日期:2024-11-28
$ 200 
金石堂 - 新書排行榜
御姐正太豪華拼盤 無修正改版
作者:森島コン
出版社:未來數位有限公司
出版日期:2024-10-30
$ 255 
博客來 - 新書排行榜
奈奈與薰的SM日記(06)
作者:甘詰留太
出版社:青文
出版日期:2024-12-12
$ 110 
 

©2024 FindBook.com.tw -  購物比價  找書網  找車網  服務條款  隱私權政策