Continuous state dynamic models can be reformulated into discrete state processes. This process generates numerical schemes that lead theoretical iterative schemes. This type of method of stochastic modelling generates three basic problems. First, the fundamental properties of solution, namely, existence, uniqueness, measurability, continuous dependence on system parameters depend on mode of convergence. Second, the basic probabilistic and statistical properties, namely, the behavior of mean, variance, moments of solutions are described as qualitative/quantitative properties of solution process. We observe that the nature of probability distribution or density functions possess the qualitative/quantitative properties of iterative prosses as a special case. Finally, deterministic versus stochastic modelling of dynamic processes is to what extent the stochastic mathematical model differs from the corresponding deterministic model in the absence of random disturbances or fluctuations and uncertainties.Most literature in this subject was developed in the 1950s, and focused on the theory of systems of continuous and discrete-time deterministic; however, continuous-time and its approximation schemes of stochastic differential equations faced the solutions outlined above and made slow progress in developing problems. This monograph addresses these problems by presenting an account of stochastic versus deterministic issues in discrete state dynamic systems in a systematic and unified way.