第1章 PyTorch與深度學習
1.1 人工智慧
1.2 機器學習
1.3 深度學習
1.4 小結
第2章 神經網路的構件
2.1 安裝PyTorch
2.2 實作第一個神經網路
2.3 小結
第3章 深入瞭解神經網路
3.1 詳解神經網路的構件
3.2 小結
第4章 機器學習基礎
4.1 三種機器學習問題
4.2 機器學習術語
4.3 評估機器學習模型
4.4 資料前處理與特徵工程
4.5 過度擬合與欠擬合
4.6 機器學習專案的工作流程
4.7 小結
第5章 應用於電腦視覺的深度學習
5.1 神經網路簡介
5.2 從零開始建立CNN 模型
5.3 建立與探索VGG16 模型
5.4 計算預卷積特徵
5.5 理解CNN 模型如何學習
5.6 CNN 層的視覺化權重
5.7 小結
第6章 序列資料和文本的深度學習
6.1 使用文本資料
6.2 透過建立情感分類器訓練詞嵌入
6.3 使用預訓練的詞嵌入
6.4 遞迴神經網路(RNN)
6.5 長短期記憶(LSTM)
6.6 使用序列資料的卷積網路
6.7 小結
第7章 生成網路
7.1 神經風格轉換(neural style transfer)
7.2 生成對抗網路(GAN)
7.3 深度卷積生成對抗網路(DCGAN)
7.4 建立語言模型
7.5 小結
第8章 現代網路架構
8.1 現代網路架構
8.2 密集連接卷積網路(DenseNet)
8.3 模型集成
8.4 encoder-decoder 架構
8.5 小結
第9章 未來走向
9.1 未來走向
9.2 回顧
9.3 有趣的創意應用
9.4 如何跟上最新進展
9.5 小結