購物比價找書網找車網
FindBook
排序:
 
 有 1 項符合

坎茲

的圖書
非線性時間序列分析:第2版
$ 465
非線性時間序列分析:第2版
作者:(坎茲 
出版社:世界圖書出版公司北京公司
出版日期:2015-03-01
語言:簡體中文   規格:369頁 / 普通級/ 1-1
博客來 博客來 - 物理/化學  - 來源網頁  
圖書介紹看圖書介紹
圖書介紹 - 資料來源:博客來   評分:
圖書名稱:非線性時間序列分析:第2版

內容簡介

本書旨在以動力系統理論為基礎,闡述時間序列分析的現代方法。這部修訂版,增加了一些新的章節,對原版進行了大量的修訂和擴充。從潛在的理論出發,到實際應用話題,並用眾多 •領域收集來的大量經驗數據解釋這些實用話題。本書對研究時間變量信號的各個領域包括地球、生命科學科學家和工程人員都十分有用。

Holger Kantz(H.坎茲,德國)是國際知名學者,在數學和物理學界享有盛譽。本書凝聚了作者多年科研和教學成果,適用於科研工作者、高校教師和研究生。
 

目錄

Preface to the first edition
Preface to the second edition
Acknowledgements
Ⅰ Basictopics
1 Introduction: why nonlinear methods?
2 Linear tools and general considerations
2.1 Stationarity and sampling
2.2 Testing for stationarity
2.3 Linear correlations and the power spectrum
2.3.1 Stationarity and the low—frequency component in the power spectrum
2.4 Linear filters
2.5 Linearpredictions
3 Phase space methods
3.1 Determinism: uniqueness in phase space
3.2 Delayreconstruction
3.3 Finding a good embedding
3.3.1 False neighbours
3.3.2 The time lag
3.4 Visual inspection of data
3.5 Poincare surface of section
3.6 Recurrenceplots
4 Determinism and predictability
4.1 Sources of predictability
4.2 Simple nonlinear prediction algorithm
4.3 Verification ofsuccessful prediction
4.4 Cross—prediction errors: probing stationarity
4.5 Simple nonlinear noise reduction
5 Instability: Lyapunov exponents
5.1 Sensitive dependence on initial conditions
5.2 Exponentialdivergence
5.3 Measuring the maximalexponent from data
6 Self—similarity:dimensions
6.1 Attractor geometry and fractals
6.2 Correlationdimension
6.3 Correlation sum from a time series
6.4 Interpretation and pitfalls
6.5 Temporalcorrelations, non—stationarity, and space time separation plots
6.6 Practicalconsiderations
6.7 A useful application: determination of the noise level using the correlation integral
6.8 Multi—scale or self—similar signals
6.8.1 Scalinglaws
6.8.2 Detrended fluctuation analysis
7 Using nonlinear methods when determinismis weak
7.1 Testing for nonlinearity with surrogate data
7.1.1 The null hypothesis
7.1.2 How to make surrogate data sets
7.1.3 Which statistics to use
7.1.4 What can go wrong
7.1.5 What we havelearned
7.2 Nonlinear statistics for system discrimination
7.3 Extracting qualitative information from a time series
8 Selected nonlinear phenomena
8.1 Robustness and limit cycles
8.2 Coexistence of attractors
8.3 Transients
8.4 Intermittency
8.5 Structural stabilitY
8.6 Bifurcations
8.7 Quasi—periodicity

Ⅱ Advancedtopics
9 Advanced embedding methods
9.1 Embedding theorems
9.1.1 Whitney’’s embedding theorem
9.1.2 Takens’’s delay embedding theorem
9.2 The time lag
9.3 Filtered delay embeddings
9.3.1 Derivative coordinates
9.3.2 Principal component analysis
9.4 Fluctuating time intervals
9.5 Multichannel measurements
9.5.1 Equivalent variables at different positions
9.5.2 Variables with different physical meanings
9.5.3 Distributed systems
9.6 Embedding of interspike intervals
9.7 High dimensional chaos and the limitations of the time delay embedding
9.8 Embedding for systems with time delayed feedback
10 Chaotic data and noise
10.1 Measurement noise and dynamical noise
10.2 Effects of noise
10.3 Nonlinear noise reduction
10.3.1 Noise reduction by gradient descent
10.3.2 Local projective noise reduction
10.3.3 Implementation oflocally projective noise reduction
10.3.4 How much noise.is taken out?
10.3.5 Consistencytests
10.4 An application: foetal ECG extraction
11 More aboutinvariant quantities
11.1 Ergodicity and strange attractors
11.2 Lyapunov exponents Ⅱ
11.2.1 The spectrum of Lyapunov exponents and invariant manifolds
11.2.2 Flows versus maps
11.2.3 Tangent space method
11.2.4 Spuriousexponents
11.2.5 Almost two dimensional flows
11.3 Dimensions Ⅱ
11.3.1 Generalised dimensions, multi—fractals
11.3.2 Information dimension from a time series
11.4 Entropies
11.4.1 Chaos and the flow ofinformation
11.4.2 Entropies of a static distribution
11.4.3 The Kolmogorov—Sinai entropy
11.4.4 The e—entropy per unit time
11.4.5 Entropies from time series data
11.5 How things are related
11.5.1 Pesin’’sidentity
11.5.2 Kaplan—Yorkeconjecture
12 Modelling and forecasting
12.1 Linear stochastic models and filters
12.1.1 Linear filters
12.1.2 Nonlinear filters
12.2 Deterministicdynamics
12.3 Local methods in phase space
12.3.1 Almost model free methods
12.3.2 Local linear fits
12.4 Global nonlinear models
12.4.1 Polynomials
12.4.2 Radial basis functions
12.4.3 Neuralnetworks
12.4.4 What to do in practice
12.5 Improved cost functions
12.5.1 Overfitting and modelcosts
12.5.2 The errors—in—variables problem
12.5.3 Modelling versus prediction
12.6 Model verification
12.7 Nonlinear stochastic processes from data
12.7.1 Fokker—Planck equations from data
12.7.2 Markov chains in embedding space
12.7.3 No embedding theorem for Markov chains
12.7.4 Predictions for Markov chain data
12.7.5 Modelling Markov chain data
12.7.6 Choosing embedding parameters for Markov chains
12.7.7 Application: prediction of surface wind velocities
12.8 Predicting prediction errors
12.8.1 Predictabilitymap
12.8.2 Individual error prediction
12.9 Multi—step predictions versus iterated one—step predictions
13 Non—stationary signals
13.1 Detecting non—stationarity
13.1.1 Making non—stationary data stationary
13.2 Over—embedding
13.2.1 Deterministic systems with parameter drift
13.2.2 Markov chain with parameter drift
13.2.3 Data analysis in over—embedding spaces
13.2.4 Application: noise reduction for human voice
13.3 Parameter spaces from data
14 Coupling and synchronisation of nonlinear systems
14.1 Measures for interdependence
14.2 Transfer entropy
14.3 Synchronisation
15 Chaos control
15.1 Unstable periodic orbits and their invariant manifolds
15.1.1 Locating periodic orbits
15.1.2 Stable/unstable manifolds from data
15.2 OGY—control and derivates
15.3 Variants of OGY—control
15.4 Delayed feedback
15.5 Tracking
15.6 Relatedaspects

A Using the TISEAN programs
A.1 Information relevant to most of the routines
A.1.1 Efficient neighbour searching
A.1.2 Re—occurring command options
A.2 Second—order statistics and linear models
A.3 Phase space tools
A.4 Prediction and modelling
A.4.1 Locally constant predictor
A.4.2 Locally linear prediction
A.4.3 Global nonlinear models
A.5 Lyapunov exponents
A.6 Dimensions and entropies
A.6.1 The correlation sum
A.6.2 Information dimension, fixed mass algorithm
A.6.3 Entropies
A.7 Surrogate data and test statistics
A.8 Noise reduction
A.9 Finding unstable periodic orbits
A.10 Multivariate data

B Description of the experimental data sets
B.1 Lorenz—like chaos in an NH3 laser
B.2 Chaos in a periodically modulated NMR laser
B.3 Vibrating string
B.4 Taylor—Couette flow
B.5 Multichannel physiological data
B.6 Heart rate during atrial fibrillation
B.7 Human electrocardiogram (ECG)
B.8 Phonation data
B.9 Postural control data
B.10 Autonomous CO2 laser with feedback
B.11 Nonlinear electric resonance Circuit
B.12 Frequency doubling solid state laser
B.13 Surface wind velocities
References
Index
 

詳細資料

  • ISBN:9787510087721
  • 規格:369頁 / 普通級 / 1-1
  • 出版地:大陸
贊助商廣告
 
金石堂 - 今日66折
深度學習力(暢銷新裝版):學歷貶值時代,MIT博士教你從大學就脫穎而出的75個成功法則
作者:卡爾.紐波特
出版社:時報文化出版企業股份有限公司
出版日期:2024-03-12
66折: $ 231 
金石堂 - 今日66折
STEM的一天:科技-配合108課綱自然科學領域,培養小學生科技素養,具備好奇心與處理日常生活問題的能力
作者:南西迪克曼
出版社:五南圖書出版股份有限公司
出版日期:2020-03-28
66折: $ 211 
金石堂 - 今日66折
賽斯速成100有聲書 第1輯
作者:王怡仁
出版社:賽斯文化
出版日期:2017-03-10
66折: $ 858 
 
Taaze 讀冊生活 - 暢銷排行榜
我可能錯了:森林智者的最後一堂人生課
作者:比約恩.納提科.林德布勞、卡洛琳.班克勒、納維德.莫迪里
出版社:先覺出版
出版日期:2023-02-01
$ 355 
金石堂 - 暢銷排行榜
α的新娘 共鳴戀情(03)特典版
作者:岩本薫/幸村佳苗
出版社:青文出版社股份有限公司
出版日期:2025-02-12
$ 126 
Taaze 讀冊生活 - 暢銷排行榜
請解開故事謎底(4)
作者:花於景(雷雷夥伴)
出版社:魔豆文化
出版日期:2025-02-05
$ 150 
博客來 - 暢銷排行榜
迷宮飯 世界導覽冒險者聖經 完全版(全)
出版日期:2025-01-22
$ 450 
 
Taaze 讀冊生活 - 新書排行榜
就是這樣的性愛觀(02)
作者:裏筋侍
出版社:暮想出版股份有限公司
出版日期:2025-01-20
$ 270 
博客來 - 新書排行榜
請解開故事謎底 04
作者:花於景(雷雷夥伴)
出版社:魔豆文化
出版日期:2025-02-05
$ 150 
Taaze 讀冊生活 - 新書排行榜
妳好,陸彌(上)
作者:林不答
出版社:英屬維京群島商高寶國際有限公司台灣分公司
出版日期:2025-01-08
$ 238 
博客來 - 新書排行榜
藥師少女的獨語 14 (首刷限定版)
出版日期:2025-02-14
$ 187 
 

©2025 FindBook.com.tw -  購物比價  找書網  找車網  服務條款  隱私權政策