Part I The Basic Equations
1 Coordinates, Mass Distribution, and Gravitational Field in Spherical Stars
1.1 Eulerian Description
1.2 Lagrangian Description
1.3 The Gravitational Field
2 Conservation of Momentum
2.1 Hydrostatic Equilibrium
2.2 The Role of Density and Simple Solutions
2.3 Simple Estimates of Central Values Pc; Tc
2.4 The Equation of Motion for Spherical Symmetry
2.5 The Non-spherical Case
2.6 Hydrostatic Equilibrium in General Relativity
2.7 The Piston Model
3 The Virial Theorem
3.1 Stars in Hydrostatic Equilibrium
3.2 The Virial Theorem of the Piston Model
3.3 The Kelvin-Helmholtz Timescale
3.4 The Virial Theorem for Non-vanishing Surface Pressure
4 Conservation of Energy
4.1 Thermodynamic Relations
4.2 The Perfect Gas and the Mean MolecularWeight
4.3 Thermodynamic Quantities for the Perfect, Monatomic Gas
4.4 Energy Conservation in Stars
4.5 Global and Local Energy Conservation
4.6 Timescales
5 Transport of Energy by Radiation and Conduction
5.1 Radiative Transport of Energy
5.1.1 Basic Estimates
5.1.2 Diffusion of Radiative Energy
5.1.3 The Rosseland Mean for
5.2 Conductive Transport of Energy
5.3 The Thermal Adjustment Time of a Star
5.4 Thermal Properties of the Piston Model
6 Stability Against Local, Non-spherical Perturbations
6.1 Dynamical Instability
6.2 Oscillation of a Displaced Element
6.3 Vibrational Stability
6.4 The Thermal Adjustment Time
6.5 Secular Instability
6.6 The Stability of the Piston Model
7 Transport of Energy by Convection
7.1 The Basic Picture
7.2 Dimensionless Equations
7.3 Limiting Cases, Solutions, Discussion
7.4 Extensions of the Mixing-Length Theory
8 The Chemical Composition
8.1 Relative Mass Abundances
8.2 Variation of Composition with Time
8.2.1 Radiative Regions
8.2.2 Diffusion
8.2.3 Convective Regions
9 Mass Loss
Part II The Overall Problem
10 The Differential Equations of Stellar Evolution
10.1 The Full Set of Equations
10.2 Timescales and Simplifications
11 Boundary Conditions
11.1 Central Conditions
11.2 Surface Conditions
11.3 Influence of the Surface Conditions and Properties of Envelope Solutions
11.3.1 Radiative Envelopes
11.3.2 Convective Envelopes
11.3.3 Summary
11.3.4 The T-r Stratification
……
Part III Properties of Stellar Matter
Part IV Simple Stellar Models
Part V Early Stellar Evolution
Part VI Post-Main-Sequence Evolution
Part VII Late Phases of Stellar Evolution
Part VIII Compact Objects
Part IX Pulsating Stars
References
Index