購物比價找書網找車網
FindBook
排序:
 
 有 1 項符合

塞巴斯蒂安·特龍

的圖書
概率機器人
$ 517
概率機器人
作者:(塞巴斯蒂安·特龍 
出版社:機械工業出版社
出版日期:2017-04-01
語言:簡體中文   規格:495頁 / 普通級/ 1-1
博客來 博客來 - 工程技術  - 來源網頁  
圖書介紹看圖書介紹
巴斯
巴斯巴斯是英國英格蘭西南區域薩默塞特郡巴斯和東北索美塞特區的一座城市,位於倫敦以西156千米,布里斯托東南21千米,2001年人口普查時人口為83,992。1590年,巴斯獲得伊莉莎白女王一世頒發的皇家特許證而成為市級行政單位,1889年,它從索美塞特郡中脫離出來,成為一個自治市,獲得獨立的行政管理權。1974年埃文郡成立,它被劃歸其中。1996年埃文郡廢除後,巴斯和東北索美塞特單一管理區成立,巴芙市成為該區的行政中心。

巴斯城最早建於公元43年,當時作為羅馬帝國的不列顛行省,巴斯是羅馬人的溫泉聖地,拉丁文名字是Aquae Sulis,意為「蘇利絲之水」。但口頭流傳的說法稱巴斯建城時間比這更早。埃文河谷地區的溫泉是英格蘭唯一的天然溫泉,羅馬人就在河谷之中,巴斯周圍的小山上建立了溫泉浴場和一座寺廟。公元973年,埃德加在巴斯修道院加冕成為英國國王。多年之後的喬治王時代,巴斯成為一個溫泉聖地。這使巴斯城急劇擴張,留下許多傑出的喬治時期巴斯石制建築。1987年,巴斯城當選為世界遺產城市之一。城中的各種劇院、博物館,以及其它文化和運動場所吸引了大批遊客,巴斯因而成為主要的旅遊城市。每年,造訪巴斯的過夜遊客超過100萬,一日游遊客超過380萬。該城有兩座大學,幾所學校和學院。鼎盛的服務業,信息和通信產業、創意產業的逐漸成長,為巴斯城和周邊地區的人們提供了就業機會。
  維基百科

圖書介紹 - 資料來源:博客來   評分:
圖書名稱:概率機器人

內容簡介

對概率機器人學這一新興領域進行了全面的介紹。概率機器人學依賴統計技術表示信息和進行決策,以容納當今大多數機器人應用中必然存在的不確定性,是機器人學的一個分支。它依賴統計技術表示信息和制定決策。這樣做,可以接納在當今大多數機器人應用中引起的不確定性。本書主要專注於算法,對於每種算法,均提供了四項內容:①偽碼示例;②完整的數學推導;③實驗結果;④算法優缺點的詳細討論。

《概率機器人》包括了基礎知識、定位、地圖構建、規划與控制四大部分。本書共17章,每章的后都提供了練習題和動手實踐的項目。相信本書可以加深讀者對概率機器人學的認識。

塞巴斯蒂安·特龍,Sebastian Thrun博士,計算機科學家,曾任美國谷歌公司副總裁,是美國谷歌公司X實驗室創始人,從事谷歌無人駕駛汽車和谷歌眼鏡的研發。他把統計學引入機器人學,開拓了概率機器人學領域,從此概率技術成為機器人學的主流技術並在無數商業領域得到廣泛應用。
 

目錄

譯者序
原書前言
致謝

第Ⅰ部分 基礎知識
第1章 緒論 1
1.1 機器人學中的不確定性 1
1.2 概率機器人學 2
1.3 啟示 6
1.4 本書導航 7
1.5 概率機器人課程教學 7
1.6 文獻綜述 8
第2章 遞歸狀態估計 10
2.1 引言 10
2.2 概率的基本概念 10
2.3 機器人環境交互 14
2.3.1 狀態 15
2.3.2 環境交互 16
2.3.3 概率生成法則 18
2.3.4 置信分布 19
2.4 貝葉斯濾波 20
2.4.1 貝葉斯濾波算法 20
2.4.2 實例 21
2.4.3 貝葉斯濾波的數學推導 23
2.4.4 馬爾可夫假設 25
2.5 表示法和計算 25
2.6 小結 26
2.7 文獻綜述 26
2.8 習題 27
第3章 高斯濾波 29
3.1 引言 29
3.2 卡爾曼濾波 30
3.2.1 線性高斯系統 30
3.2.2 卡爾曼濾波算法 31
3.2.3 例證 32
3.2.4 卡爾曼濾波的數學推導 33
3.3 擴展卡爾曼濾波 40
3.3.1 為什麼要線性化 40
3.3.2 通過泰勒展開的線性化 42
3.3.3 擴展卡爾曼濾波算法 44
3.3.4 擴展卡爾曼濾波的數學推導 44
3.3.5 實際考慮 46
3.4 無跡卡爾曼濾波 49
3.4.1 通過無跡變換實現線性化 49
3.4.2 無跡卡爾曼濾波算法 50
3.5 信息濾波 54
3.5.1 正則參數 54
3.5.2 信息濾波算法 55
3.5.3 信息濾波的數學推導 56
3.5.4 擴展信息濾波算法 57
3.5.5 擴展信息濾波的數學推導 58
3.5.6 實際考慮 59
3.6 小結 60
3.7 文獻綜述 61
3.8 習題 62
第4章 非參數濾波 64
4.1 直方圖濾波 64
4.1.1 離散貝葉斯濾波算法 65
4.1.2 連續狀態 65
4.1.3 直方圖近似的數學推導 67
4.1.4 分解技術 69
4.2 靜態二值貝葉斯濾波 70
4.3 粒子濾波 72
4.3.1基本算法 72
4.3.2 重要性采樣 75
4.3.3 粒子濾波的數學推導 77
4.3.4 粒子濾波的實際考慮和特性 79
4.4 小結 85
4.5 文獻綜述 85
4.6 習題 86
第5章 機器人運動 88
5.1 引言 88
5.2 預備工作 89
5.2.1 運動學構型 89
5.2.2 概率運動學 89
5.3 速度運動模型 90
5.3.1 閉式計算 91
5.3.2 采樣算法 92
5.3.3 速度運動模型的數學推導 94
5.4 里程計運動模型 99
5.4.1 閉式計算 100
5.4.2 采樣算法 102
5.4.3 里程計運動模型的數學推導 104
5.5 運動和地圖 105
5.6 小結 108
5.7 文獻綜述 109
5.8 習題 110
第6章 機器人感知 112
6.1 引言 112
6.2 地圖 114
6.3 測距儀的波束模型 115
6.3.1 基本測量算法 115
6.3.2 調節固有模型參數 119
6.3.3 波束模型的數學推導 121
6.3.4 實際考慮 126
6.3.5 波束模型的局限 127
6.4 測距儀的似然域 127
6.4.1 基本算法 127
6.4.2 擴展 130
6.5 基於相關性的測量模型 131
6.6 基於特征的測量模型 133
6.6.1 特征提取 133
6.6.2 地標的測量 133
6.6.3 已知相關性的傳感器模型 134
6.6.4 采樣位姿 135
6.6.5 進一步的考慮 137
6.7 實際考慮 137
6.8 小結 138
6.9 文獻綜述 139
6.10 習題 139

第Ⅱ部分 定 位
第7章 移動機器人定位:馬爾可夫與高斯 142
7.1 定位問題的分類 144
7.2 馬爾可夫定位 146
7.3 馬爾可夫定位圖例 147
7.4 擴展卡爾曼濾波定位 149
7.4.1 圖例 149
7.4.2 擴展卡爾曼濾波定位算法 151
7.4.3 擴展卡爾曼濾波定位的數學推導 151
7.4.4 物理實現 157
7.5 估計一致性 161
7.5.1 未知一致性的擴展卡爾曼濾波定位 161
7.5.2 極大似然數據關聯的數學推導 162
7.6 多假設跟蹤 164
7.7 無跡卡爾曼濾波定位 165
7.7.1 無跡卡爾曼濾波定位的數學推導 165
7.7.2 圖例 168
7.8 實際考慮 172
7.9 小結 174
7.10 文獻綜述 175
7.11 習題 176
第8章 移動機器人定位:柵格與蒙特卡羅 179
8.1 介紹 179
8.2 柵格定位 179
8.2.1 基本算法 179
8.2.2 柵格分辨率 180
8.2.3 計算開銷 184
8.2.4 圖例 184
8.3 蒙特卡羅定位 189
8.3.1 圖例 189
8.3.2 蒙特卡羅定位算法 191
8.3.3 物理實現 191
8.3.4 蒙特卡羅定位特性 194
8.3.5 隨機粒子蒙特卡羅定位:失效恢復 194
8.3.6 更改建議分布 198
8.3.7 庫爾貝克-萊布勒散度采樣:調節樣本集合大小 199
8.4 動態環境下的定位 203
8.5 實際考慮 208
8.6 小結 209
8.7 文獻綜述 209
8.8習題 211

第Ⅲ部分 地圖構建
第9章 占用柵格地圖構建 213
9.1 引言 213
9.2 占用柵格地圖構建算法 216
9.2.1 多傳感器信息融合 222
9.3 反演測量模型的研究 223
9.3.1 反演測量模型 223
9.3.2 從正演模型采樣 224
9.3.3 誤差函數 225
9.3.4 實例與深度思考 226
9.4 最大化后驗占用地圖構建 227
9.4.1 維持依賴實例 227
9.4.2 用正演模型進行占用柵格地圖構建 228
9.5 小結 231
9.6 文獻綜述 231
9.7 習題 232
第10章 同時定位與地圖構建 235
10.1 引言 235
10.2 基於擴展卡爾曼濾波的SLAM 237
10.2.1 設定和假設 237
10.2.2 已知一致性的SLAM問題 238
10.2.3 EKF SLAM的數學推導 241
10.3 未知一致性的EKF SLAM 244
10.3.1 通用EKF SLAM算法 244
10.3.2 舉例 247
10.3.3 特征選擇和地圖管理 250
10.4 小結 252
10.5 文獻綜述 253
10.6 習題 256
第11章 GraphSLAM算法 258
11.1 引言 258
11.2 直覺描述 260
11.2.1 建立圖形 260
11.2.2 推論 262
11.3 具體的GraphSLAM算法 265
11.4 GraphSLAM算法的數學推導 270
11.4.1 全SLAM后驗 271
11.4.2 負對數后驗 272
11.4.3 泰勒表達式 272
11.4.4 構建信息形式 273
11.4.5 濃縮信息表 274
11.4.6 恢復機器人路徑 277
11.5 GraphSLAM算法的數據關聯 278
11.5.1 未知一致性的GraphSLAM算法 279
11.5.2 一致性測試的數學推理 281
11.6 效率評價 283
11.7 實驗應用 284
11.8 其他的優化技術 288
11.9 小結 290
11.10 文獻綜述 291
11.11 習題 293
第12章 稀疏擴展信息濾波 294
12.1 引言 294
12.2 直觀描述 296
12.3 SEIF SLAM算法 298
12.4 SEIF的數學推導 301
12.4.1 運動更新 301
12.4.2 測量更新 304
12.5 稀疏化 304
12.5.1 一般思想 304
12.5.2 SEIF的稀疏化 306
12.5.3 稀疏化的數學推導 307
12.6 分期償還的近似地圖恢復 308
12.7 SEIF有多稀疏 310
12.8 增量數據關聯 313
12.8.1 計算增量數據關聯概率 313
12.8.2 實際考慮 315
12.9 分支定界數據關聯 318
12.9.1 遞歸搜索 318
12.9.2 計算任意的數據關聯概率 320
12.9.3 等價約束 320
12.10 實際考慮 322
12.11 多機器人SLAM 325
12.11.1 整合地圖 326
12.11.2 地圖整合的數學推導 328
12.11.3 建立一致性 329
12.11.4 示例 329
12.12 小結 332
12.13 文獻綜述 333
12.14 習題 334
第13章 FastSLAM算法 336
13.1 基本算法 337
13.2 因子分解SLAM后驗 338
13.2.1 因式分解的SLAM后驗的數學推導 339
13.3 具有已知數據關聯的FastSLAM算法 341
13.4 改進建議分布 346
13.4.1 通過采樣新位姿擴展路徑后驗 346
13.4.2 更新可觀察的特征估計 348
13.4.3 計算重要性系數 349
13.5 未知數據關聯 351
13.6 地圖管理 352
13.7 FastSLAM算法 353
13.8 高效實現 358
13.9 基於特征的地圖的 FastSLAM 360
13.9.1 經驗思考 360
13.9.2 閉環 363
13.10 基於柵格的FastSLAM算法 366
13.10.1 算法 366
13.10.2 經驗見解 366
13.11 小結 369
13.12 文獻綜述 371
13.13 習題 372

第Ⅳ部分 規划與控制
第14章 馬爾可夫決策過程 374
14.1 目的 374
14.2 行動選擇的不確定性 376
14.3 值迭代 380
14.3.1 目標和報酬 380
14.3.2 為完全能觀測的情況尋找最優控制策略 383
14.3.3 計算值函數 384
14.4 機器人控制的應用 387
14.5 小結 390
14.6 文獻綜述 391
14.7 習題 392
第15章 部分能觀測馬爾可夫決策過程 394
15.1 動機 394
15.2 算例分析 395
15.2.1 建立 395
15.2.2 控制選擇 397
15.2.3 感知 398
15.2.4 預測 402
15.2.5 深度周期和修剪 404
15.3 有限環境POMDP算法 407
15.4 POMDP的數學推導 409
15.4.1 置信空間的值迭代 409
15.4.2 值函數表示法 410
15.4.3 計算值函數 410
15.5 實際考慮 413
15.6 小結 416
15.7 文獻綜述 417
15.8 習題 419
第16章 近似部分能觀測馬爾可夫決策過程技術 421
16.1 動機 421
16.2 QMDP 422
16.3 AMDP 423
16.3.1 增廣的狀態空間 423
16.3.2 AMDP算法 424
16.3.3 AMDP的數學推導 426
16.3.4 移動機器人導航應用 427
16.4 MC-POMDP 430
16.4.1 使用粒子集 430
16.4.2 MC-POMDP算法 431
16.4.3 MC-POMDP的數學推導 433
16.4.4 實際考慮 434
16.5 小結 435
16.6 文獻綜述 436
16.7 習題 436
第17章 探測 438
17.1 介紹 438
17.2 基本探測算法 439
17.2.1 信息增益 439
17.2.2 貪婪技術 440
17.2.3 蒙特卡羅探測 441
17.2.4 多步技術 442
17.3 主動定位 442
17.4 為獲得占用柵格地圖的探測 447
17.4.1 計算信息增益 447
17.4.2 傳播增益 450
17.4.3 推廣到多機器人系統 452
17.5 SLAM探測 457
17.5.1 SLAM熵分解 457
17.5.2 FastSLAM探測 458
17.5.3 實驗描述 460
17.6 小結 462
17.7 文獻綜述 463
17.8 習題 466
參考文獻 468
 

詳細資料

  • ISBN:9787111504375
  • 規格:495頁 / 普通級 / 1-1
  • 出版地:大陸
贊助商廣告
 
金石堂 - 今日66折
與超靈有約有聲書第5輯
66折: $ 211 
金石堂 - 今日66折
心靈的本質有聲書第 5 輯
66折: $ 660 
金石堂 - 今日66折
原來大腦可以這樣練:提升學習抗壓力,成功者的大腦訓練運動課程
作者:洪聰敏
出版社:時報文化出版企業股份有限公司
出版日期:2021-11-23
66折: $ 211 
 
博客來 - 暢銷排行榜
臺灣漫遊錄
作者:青山千鶴子、楊双子
出版社:春山出版
出版日期:2020-03-31
$ 300 
Taaze 讀冊生活 - 暢銷排行榜
領導自己的人生
作者:盛治仁
出版社:遠見天下文化出版股份有限公司
出版日期:2024-12-23
$ 331 
金石堂 - 暢銷排行榜
限制級甜蜜蜜(6)
作者:七瀨
出版社:台灣東販股份有限公司
出版日期:2025-02-27
$ 111 
 
Taaze 讀冊生活 - 新書排行榜
性格:改變命運的22堂課
作者:奧裡森.馬登
出版社:新華先鋒(滾石移動)
出版日期:2025-02-21
$ 180 
博客來 - 新書排行榜
別對每件事都有反應2:不執著的練習
作者:枡野俊明
出版社:悅知文化
出版日期:2025-01-20
$ 260 
Taaze 讀冊生活 - 新書排行榜
餘味:跟隨餘秋雨品中國文化
作者:曾一
出版社:新華先鋒(滾石移動)
出版日期:2025-02-21
$ 180 
博客來 - 新書排行榜
減法教養:青少年家長必修!少緊盯、別老想、省規劃, 面對孩子進入「超長青春期」,走出焦慮、得到療癒的新教養守則
作者:K老師(柯書林)
出版社:天下雜誌
出版日期:2025-02-05
$ 331 
 

©2025 FindBook.com.tw -  購物比價  找書網  找車網  服務條款  隱私權政策