章節說明:第1章|人工智慧的基礎知識
01 何謂人工智慧?
02 何謂機器學習(ML)?
03 何謂深度學習(DL)?
04 人工智慧與機器學習的普及過程
第2章|機器學習的基礎知識
05 監督式學習的機制
06 非監督式學習的機制
07 增強學習的機制
08 統計與機器學習的差異
09 機器學習與特徵量
10 擅長與不擅長的領域
11 機器學習的運用範例
第3章|機器學習的程序與核心技術
12 機器學習的基本工作程序
13 蒐集資料
14 資料變形
15 模型的作成與學習
16 批次學習與線上學習
17 使用測試資料驗證預測結果
18 學習結果的評估基準
19 超參數與模型的調整
20 主動學習
21 相關與因果
22 反饋迴圈
第4章|機器學習的演算法
23 迴歸分析
24 支援向量機
25 決策樹
26 整體學習
27 整體學習的運用
28 邏輯迴歸
29 貝葉斯模型
30 時序分析與狀態空間模型
31 K 近鄰法(K-NN)與 K 平均法(K-Means)
32 維度縮減與主成分分析
33 最佳化與遺傳演算法
第5章|深度學習的基礎知識
34 類神經網路與其歷史
35 深度學習與圖像辨識
36 深度學習與自然語言處理
第6章|深度學習的程序與核心技術
37 誤差反向傳播法的類神經網路學習
38 類神經網路的最佳化
39 梯度消失問題
40 遷移學習
第7章|深度學習的演算法
41 卷積類神經網路(CNN)
42 遞歸類神經網路(RNN)
43 增強學習與深度學習
44 自動編碼器
45 GAN(生成對抗網路)
46 物體偵測
第8章|系統開發與開發環境
47 編寫人工智慧的主要程式語言
48 機器學習用資料庫與框架
49 深度學習的框架
50 GPU程式設計與高速化
51 機器學習服務