本書是《動手學深度學習》的重磅升級版本,選用經典的PyTorch深度學習框架,旨在向讀者交付更為便捷的有關深度學習的交互式學習體驗。
本書重新修訂《動手學深度學習》的所有內容,並針對技術的發展,新增注意力機制、預訓練等內容。本書包含15章,第一部分介紹深度學習的基礎知識和預備知識,並由線性模型引出最簡單的神經網絡——多層感知機;第二部分闡述深度學習計算的關鍵組件、卷積神經網絡、循環神經網絡、注意力機制等大多數現代深度學習應用背後的基本工具;第三部分討論深度學習中常用的優化算法和影響深度學習計算性能的重要因素,並分別列舉深度學習在計算機視覺和自然語言處理中的重要應用。
本書同時覆蓋深度學習的方法和實踐,主要面向在校大學生、技術人員和研究人員。閱讀本書需要讀者了解基本的Python編程知識及預備知識中描述的線性代數、微分和概率等基礎知識。
阿斯頓·張(Aston Zhang),亞馬遜資深科學家,美國伊利諾伊大學香檳分校計算機科學博士,統計學和計算機科學雙碩士。他專註于機器學習和自然語言處理的研究,榮獲深度學習國際頂級學術會議ICLR傑出論文獎、ACM UbiComp傑出論文獎以及ACM SenSys最佳論文獎提名。他擔任過EMNLP領域主席和AAAI資深程序委員。
扎卡里·C. 立頓(Zachary C. Lipton),美國卡內基梅隆大學機器學習和運籌學助理教授,並在海因茨公共政策學院以及軟件和社會系統系擔任禮節性任命。他領導着近似正確機器智能(ACMI)實驗室,研究涉及核心機器學習方法、其社會影響以及包括臨床醫學和自然語言處理在內的各種應用領域。他目前的研究重點包括處理各種因果結構下分佈變化的穩健和自適應算法、超越預測為決策提供信息(包括應對已部署模型的戰略響應)、醫學診斷和預后預測、算法公平性和可解釋性的基礎。他是“Approximately Correct”博客的創始人,也是諷刺性漫畫“Superheroes of Deep Learning”的合著者。
李沐(Mu Li),亞馬遜資深首席科學家(Senior Principal Scientist),美國加利福尼亞大學伯克利分校、斯坦福大學客座助理教授,美國卡內基梅隆大學計算機系博士。他曾任機器學習創業公司Marianas Labs的CTO和百度深度學習研究院的主任研發架構師。他專註于機器學習系統和機器學習算法的研究。他在理論與應用、機器學習與操作系統等多個領域的頂級學術會議上發表過論文,被引用上萬次。
亞歷山大·J. 斯莫拉(Alexander J. Smola),亞馬遜副總裁/傑出科學家,德國柏林工業大學計算機科學博士。他曾在澳大利亞國立大學、美國加利福尼亞大學伯克利分校和卡內基梅隆大學任教。他發表過超過300篇學術論文,並著有5本書,其論文及書被引用超過15萬次。他的研究興趣包括深度學習、貝葉斯非參數、核方法、統計建模和可擴展算法。
何孝霆(Xiaoting He),亞馬遜應用科學家,中國科學院軟件工程碩士。他專註于對深度學習的研究,特別是自然語言處理的應用(包括語言模型、AIOps、OCR),相關工作落地于眾多企業。他擔任過ACL、EMNLP、NAACL、EACL等學術會議的程序委員或審稿人。