購物比價找書網找車網
FindBook  
 有 1 項符合

Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats

的圖書
Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats

作者:Aravilli 
出版社:Packt Publishing
出版日期:2024-05-24
語言:英文   規格:平裝 / 402頁 / 23.5 x 19.05 x 2.08 cm / 普通級/ 初版
圖書選購
型式價格供應商所屬目錄
 
$ 2474
博客來 博客來
科技與應用科學總論
圖書介紹 - 資料來源:博客來   評分:
圖書名稱:Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats

內容簡介

Gain hands-on experience in data privacy and privacy-preserving machine learning with open-source ML frameworks, while exploring techniques and algorithms to protect sensitive data from privacy breaches

Key Features
  • Understand machine learning privacy risks and employ machine learning algorithms to safeguard data against breaches
  • Develop and deploy privacy-preserving ML pipelines using open-source frameworks
  • Gain insights into confidential computing and its role in countering memory-based data attacks
  • Purchase of the print or Kindle book includes a free PDF eBook
Book Description

Privacy regulations are evolving each year and compliance with privacy regulations is mandatory for every enterprise. Machine learning engineers are required to not only analyze large amounts of data to gain crucial insights, but also comply with privacy regulations to protect sensitive data. This may seem quite challenging considering the large volume of data involved and lack of in-depth expertise in privacy-preserving machine learning.

This book delves into data privacy, machine learning privacy threats, and real-world cases of privacy-preserving machine learning, as well as open-source frameworks for implementation. You’ll be guided through developing anti-money laundering solutions via federated learning and differential privacy. Dedicated sections also address data in-memory attacks and strategies for safeguarding data and ML models. The book concludes by discussing the necessity of confidential computation, privacy-preserving machine learning benchmarks, and cutting-edge research.

By the end of this machine learning book, you’ll be well-versed in privacy-preserving machine learning and know how to effectively protect data from threats and attacks in the real world.

What you will learn
  • Study data privacy, threats, and attacks across different machine learning phases
  • Explore Uber and Apple cases for applying differential privacy and enhancing data security
  • Discover IID and non-IID data sets as well as data categories
  • Use open-source tools for federated learning (FL) and explore FL algorithms and benchmarks
  • Understand secure multiparty computation with PSI for large data
  • Get up to speed with confidential computation and find out how it helps data in memory attacks
Who this book is for

This book is for data scientists, machine learning engineers, and privacy engineers who have working knowledge of mathematics as well as basic knowledge in any one of the ML frameworks (TensorFlow, PyTorch, or scikit-learn).

Table of Contents
  1. Introduction to Data Privacy, Privacy threats and breaches
  2. Machine Learning Phases and privacy threats/attacks in each phase
  3. Overview of Privacy Preserving Data Analysis and Introduction to Differential Privacy
  4. Differential Privacy Algorithms, Pros and Cons
  5. Developing Applications with Different Privacy using open source frameworks
  6. Need for Federated Learning and implementing Federated Learning using open source frameworks
  7. Federated Learning benchmarks, startups and next opportunity
  8. Homomorphic Encryption and Secure Multiparty Computation
  9. Confidential computing - what, why and current state
  10. Privacy Preserving in Large Language Models

 

詳細資料

  • ISBN:9781800564671
  • 規格:平裝 / 402頁 / 23.5 x 19.05 x 2.08 cm / 普通級 / 初版
  • 出版地:美國
贊助商廣告
 
金石堂 - 今日66折
周姚萍講新成語故事2:彩色雨和分數雨-附「小作家上場」+「拼字變成語」超萌稿紙,培養小學生的讀寫
作者:周姚萍
出版社:五南圖書出版股份有限公司
出版日期:2018-05-28
66折: $ 198 
金石堂 - 今日66折
阿吉的魔法紅球+阿吉的好勝直球【好球出擊】限量套書(共二冊,加贈阿吉「可愛記名」姓名貼)
作者:松丘光
出版社:小熊出版社
出版日期:2023-09-20
66折: $ 436 
金石堂 - 今日66折
魯迅經典(套書)
作者:魯迅
出版社:好優文化
出版日期:2022-10-17
66折: $ 2600 
 
Taaze 讀冊生活 - 暢銷排行榜
藏傳密續的真相
作者:圖敦‧耶喜喇嘛
出版社:橡樹林
出版日期:2012-09-16
$ 264 
Taaze 讀冊生活 - 暢銷排行榜
制度基因:中國制度與極權主義制度的起源(平裝版)
作者:許成鋼
出版社:國立臺灣大學出版中心
出版日期:2024-11-29
$ 647 
金石堂 - 暢銷排行榜
霰草忍法帖(07)
作者:春輝
出版社:青文出版社股份有限公司
出版日期:2024-11-18
$ 111 
Taaze 讀冊生活 - 暢銷排行榜
陪孩子好好說話︰讓愛無礙,養成良好的親子溝通
作者:尚瑞君
出版社:大溏文化事業有限公司
出版日期:2024-10-09
$ 300 
 
金石堂 - 新書排行榜
α╳α的早餐戀愛(全)
作者:哈哈馬
出版社:東立出版社
出版日期:2024-12-31
$ 190 
金石堂 - 新書排行榜
十二支色戀草子 外傳(2)
作者:待緒イサミ
出版社:台灣東販股份有限公司
出版日期:2024-11-27
$ 119 
Taaze 讀冊生活 - 新書排行榜
超越認知障礙 曹爸有方:保有快樂記憶、忘得輕安自在,有尊嚴安老終老【暢銷增訂版】
作者:曹汶龍
出版社:原水
出版日期:2024-11-21
$ 350 
博客來 - 新書排行榜
活用技術分析寶典:飆股上校朱家泓40年實戰精華 從K線、均線到交易高手的養成祕笈 (上、下冊)
作者:朱家泓
出版社:金尉
出版日期:2024-11-21
$ 948 
 

©2024 FindBook.com.tw -  購物比價  找書網  找車網  服務條款  隱私權政策