購物比價找書網找車網
FindBook  
 有 1 項符合

Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats

的圖書
Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats

作者:Aravilli 
出版社:Packt Publishing
出版日期:2024-05-24
語言:英文   規格:平裝 / 402頁 / 23.5 x 19.05 x 2.08 cm / 普通級/ 初版
圖書選購
型式價格供應商所屬目錄
 
$ 2474
博客來 博客來
網際網路
圖書介紹 - 資料來源:博客來   評分:
圖書名稱:Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats

內容簡介

Gain hands-on experience in data privacy and privacy-preserving machine learning with open-source ML frameworks, while exploring techniques and algorithms to protect sensitive data from privacy breaches

Key Features
  • Understand machine learning privacy risks and employ machine learning algorithms to safeguard data against breaches
  • Develop and deploy privacy-preserving ML pipelines using open-source frameworks
  • Gain insights into confidential computing and its role in countering memory-based data attacks
  • Purchase of the print or Kindle book includes a free PDF eBook
Book Description

Privacy regulations are evolving each year and compliance with privacy regulations is mandatory for every enterprise. Machine learning engineers are required to not only analyze large amounts of data to gain crucial insights, but also comply with privacy regulations to protect sensitive data. This may seem quite challenging considering the large volume of data involved and lack of in-depth expertise in privacy-preserving machine learning.

This book delves into data privacy, machine learning privacy threats, and real-world cases of privacy-preserving machine learning, as well as open-source frameworks for implementation. You’ll be guided through developing anti-money laundering solutions via federated learning and differential privacy. Dedicated sections also address data in-memory attacks and strategies for safeguarding data and ML models. The book concludes by discussing the necessity of confidential computation, privacy-preserving machine learning benchmarks, and cutting-edge research.

By the end of this machine learning book, you’ll be well-versed in privacy-preserving machine learning and know how to effectively protect data from threats and attacks in the real world.

What you will learn
  • Study data privacy, threats, and attacks across different machine learning phases
  • Explore Uber and Apple cases for applying differential privacy and enhancing data security
  • Discover IID and non-IID data sets as well as data categories
  • Use open-source tools for federated learning (FL) and explore FL algorithms and benchmarks
  • Understand secure multiparty computation with PSI for large data
  • Get up to speed with confidential computation and find out how it helps data in memory attacks
Who this book is for

This book is for data scientists, machine learning engineers, and privacy engineers who have working knowledge of mathematics as well as basic knowledge in any one of the ML frameworks (TensorFlow, PyTorch, or scikit-learn).

Table of Contents
  1. Introduction to Data Privacy, Privacy threats and breaches
  2. Machine Learning Phases and privacy threats/attacks in each phase
  3. Overview of Privacy Preserving Data Analysis and Introduction to Differential Privacy
  4. Differential Privacy Algorithms, Pros and Cons
  5. Developing Applications with Different Privacy using open source frameworks
  6. Need for Federated Learning and implementing Federated Learning using open source frameworks
  7. Federated Learning benchmarks, startups and next opportunity
  8. Homomorphic Encryption and Secure Multiparty Computation
  9. Confidential computing - what, why and current state
  10. Privacy Preserving in Large Language Models

 

詳細資料

  • ISBN:9781800564671
  • 規格:平裝 / 402頁 / 23.5 x 19.05 x 2.08 cm / 普通級 / 初版
  • 出版地:美國
贊助商廣告
 
金石堂 - 今日66折
後來,我告了報社老闆:一本直擊新聞製造內幕的前總編輯回憶錄
作者:大衛.希門內斯
出版社:木馬文化事業有限公司
出版日期:2021-12-08
66折: $ 277 
金石堂 - 今日66折
絕對機密小百科:陰險的祕密、詭詐的資訊,挑戰你的心機指數!
作者:克里斯賓.波伊爾
出版社:大石國際文化
出版日期:2018-10-04
66折: $ 231 
金石堂 - 今日66折
陽宅生基512套範例(不可退書)
作者:韓雨墨
出版社:大元書局
出版日期:2010-06-29
66折: $ 199 
 
博客來 - 暢銷排行榜
蔡康永的情商課:為你自己活一次
作者:蔡康永
出版社:如何
出版日期:2018-11-01
$ 276 
博客來 - 暢銷排行榜
膽大黨 14
作者:龍幸伸
出版社:東立
出版日期:2024-09-27
$ 93 
金石堂 - 暢銷排行榜
腐男子召喚~來到異世界被神獸設計了~  02
作者:藤咲もえ
出版社:東立出版社
出版日期:2024-10-30
$ 119 
Taaze 讀冊生活 - 暢銷排行榜
長期買進︰財金教授周冠男的42堂自制力投資課
作者:周冠男
出版社:遠見天下文化出版股份有限公司
出版日期:2024-07-31
$ 355 
 
金石堂 - 新書排行榜
青梅竹馬是墮落聖女!(2)
作者:ショーソン
出版社:台灣角川股份有限公司
出版日期:2024-11-07
$ 111 
Taaze 讀冊生活 - 新書排行榜
2025【一本搞定鐵路運輸學】臺鐵鐵路運輸學概要(臺灣鐵路公司)
作者:白崑成
出版社:千華數位文化股份有限公司
出版日期:2024-10-10
$ 585 
Taaze 讀冊生活 - 新書排行榜
2025【心智圖搭配文字說明】高齡金融規劃顧問師資格測驗一次過關(高齡金融規劃顧問師)
作者:黃素慧
出版社:千華數位文化股份有限公司
出版日期:2024-09-05
$ 504 
Taaze 讀冊生活 - 新書排行榜
黃婉玲的減醣家常菜:56道融入老台菜技法的減醣佳餚,輕鬆打造日日豐盛餐桌
作者:黃婉玲
出版社:時報文化出版企業股份有限公司
出版日期:2024-11-05
$ 364 
 

©2024 FindBook.com.tw -  購物比價  找書網  找車網  服務條款  隱私權政策