購物比價找書網找車網
FindBook  
 有 1 項符合

Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats

的圖書
Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats

作者:Aravilli 
出版社:Packt Publishing
出版日期:2024-05-24
語言:英文   規格:平裝 / 402頁 / 23.5 x 19.05 x 2.08 cm / 普通級/ 初版
圖書選購
型式價格供應商所屬目錄
 
$ 2474
博客來 博客來
科技與應用科學總論
圖書介紹 - 資料來源:博客來   評分:
圖書名稱:Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats

內容簡介

Gain hands-on experience in data privacy and privacy-preserving machine learning with open-source ML frameworks, while exploring techniques and algorithms to protect sensitive data from privacy breaches

Key Features
  • Understand machine learning privacy risks and employ machine learning algorithms to safeguard data against breaches
  • Develop and deploy privacy-preserving ML pipelines using open-source frameworks
  • Gain insights into confidential computing and its role in countering memory-based data attacks
  • Purchase of the print or Kindle book includes a free PDF eBook
Book Description

Privacy regulations are evolving each year and compliance with privacy regulations is mandatory for every enterprise. Machine learning engineers are required to not only analyze large amounts of data to gain crucial insights, but also comply with privacy regulations to protect sensitive data. This may seem quite challenging considering the large volume of data involved and lack of in-depth expertise in privacy-preserving machine learning.

This book delves into data privacy, machine learning privacy threats, and real-world cases of privacy-preserving machine learning, as well as open-source frameworks for implementation. You’ll be guided through developing anti-money laundering solutions via federated learning and differential privacy. Dedicated sections also address data in-memory attacks and strategies for safeguarding data and ML models. The book concludes by discussing the necessity of confidential computation, privacy-preserving machine learning benchmarks, and cutting-edge research.

By the end of this machine learning book, you’ll be well-versed in privacy-preserving machine learning and know how to effectively protect data from threats and attacks in the real world.

What you will learn
  • Study data privacy, threats, and attacks across different machine learning phases
  • Explore Uber and Apple cases for applying differential privacy and enhancing data security
  • Discover IID and non-IID data sets as well as data categories
  • Use open-source tools for federated learning (FL) and explore FL algorithms and benchmarks
  • Understand secure multiparty computation with PSI for large data
  • Get up to speed with confidential computation and find out how it helps data in memory attacks
Who this book is for

This book is for data scientists, machine learning engineers, and privacy engineers who have working knowledge of mathematics as well as basic knowledge in any one of the ML frameworks (TensorFlow, PyTorch, or scikit-learn).

Table of Contents
  1. Introduction to Data Privacy, Privacy threats and breaches
  2. Machine Learning Phases and privacy threats/attacks in each phase
  3. Overview of Privacy Preserving Data Analysis and Introduction to Differential Privacy
  4. Differential Privacy Algorithms, Pros and Cons
  5. Developing Applications with Different Privacy using open source frameworks
  6. Need for Federated Learning and implementing Federated Learning using open source frameworks
  7. Federated Learning benchmarks, startups and next opportunity
  8. Homomorphic Encryption and Secure Multiparty Computation
  9. Confidential computing - what, why and current state
  10. Privacy Preserving in Large Language Models

 

詳細資料

  • ISBN:9781800564671
  • 規格:平裝 / 402頁 / 23.5 x 19.05 x 2.08 cm / 普通級 / 初版
  • 出版地:美國
贊助商廣告
 
金石堂 - 今日66折
你不能選擇出身,但能活出想要的人生:大姐Selena寫給不甘現狀、不想放棄的你
作者:陳珮甄 Selena
出版社:圓神出版社
出版日期:2023-04-01
66折: $ 231 
金石堂 - 今日66折
葛瑞的囧日記5-8集套書
66折: $ 1003 
金石堂 - 今日66折
世界已經回不去了,學會放棄才有轉機
作者:澤圓
出版社:究竟出版社股份有限公司
出版日期:2022-06-01
66折: $ 218 
金石堂 - 今日66折
我決定刻薄地生活:在不受傷害的情況下,打動人心的關係心理學【隨書加贈「自信有理,刻薄無罪!」金句書籤】
作者:楊昌順(양창순)
出版社:圓神出版社
出版日期:2023-02-01
66折: $ 238 
 
博客來 - 暢銷排行榜
張忠謀自傳:下冊 一九六四 ── 二〇一八
出版日期:2024-11-29
$ 592 
博客來 - 暢銷排行榜
原子習慣:細微改變帶來巨大成就的實證法則
作者:詹姆斯‧克利爾 (James Clear)
出版社:方智
出版日期:2019-06-01
$ 260 
博客來 - 暢銷排行榜
蛤蟆先生去看心理師(暢銷300萬冊!英國心理諮商經典,附《蛤蟆先生勇氣藏書卡》組)
作者:羅伯.狄保德 (Robert de Board)
出版社:三采
出版日期:2022-01-26
$ 316 
金石堂 - 暢銷排行榜
落雷擊中邱比特系列 新裝特裝版
作者:鈴丸みんた
出版社:尖端漫畫
出版日期:2024-12-27
$ 600 
 
金石堂 - 新書排行榜
【實證醫學 完整解析】糖尿病緩解心法:從減藥到停藥!肉菜冷飯定時定量飲食,讓你穩血糖、降三高、減體重!
作者:洪建德
出版社:原水文化事業股份有限公司
出版日期:2025-01-04
$ 435 
博客來 - 新書排行榜
深夜食堂29
出版日期:2024-12-25
$ 189 
金石堂 - 新書排行榜
兄妹之間想做的事(3)完
作者:葉乃はるか
出版社:台灣角川股份有限公司
出版日期:2025-01-09
$ 111 
Taaze 讀冊生活 - 新書排行榜
左膠是如何煉成的:左派理論如何讓一切都成了問題?危害社會民主價值
作者:海倫.普魯克羅斯、詹姆斯.林賽
出版社:八旗文化
出版日期:2025-01-02
$ 420 
 

©2025 FindBook.com.tw -  購物比價  找書網  找車網  服務條款  隱私權政策