購物比價找書網找車網
FindBook  
 有 1 項符合

Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats

的圖書
Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats

作者:Aravilli 
出版社:Packt Publishing
出版日期:2024-05-24
語言:英文   規格:平裝 / 402頁 / 23.5 x 19.05 x 2.08 cm / 普通級/ 初版
圖書選購
型式價格供應商所屬目錄
 
$ 2474
博客來 博客來
科技與應用科學總論
圖書介紹 - 資料來源:博客來   評分:
圖書名稱:Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats

內容簡介

Gain hands-on experience in data privacy and privacy-preserving machine learning with open-source ML frameworks, while exploring techniques and algorithms to protect sensitive data from privacy breaches

Key Features
  • Understand machine learning privacy risks and employ machine learning algorithms to safeguard data against breaches
  • Develop and deploy privacy-preserving ML pipelines using open-source frameworks
  • Gain insights into confidential computing and its role in countering memory-based data attacks
  • Purchase of the print or Kindle book includes a free PDF eBook
Book Description

Privacy regulations are evolving each year and compliance with privacy regulations is mandatory for every enterprise. Machine learning engineers are required to not only analyze large amounts of data to gain crucial insights, but also comply with privacy regulations to protect sensitive data. This may seem quite challenging considering the large volume of data involved and lack of in-depth expertise in privacy-preserving machine learning.

This book delves into data privacy, machine learning privacy threats, and real-world cases of privacy-preserving machine learning, as well as open-source frameworks for implementation. You’ll be guided through developing anti-money laundering solutions via federated learning and differential privacy. Dedicated sections also address data in-memory attacks and strategies for safeguarding data and ML models. The book concludes by discussing the necessity of confidential computation, privacy-preserving machine learning benchmarks, and cutting-edge research.

By the end of this machine learning book, you’ll be well-versed in privacy-preserving machine learning and know how to effectively protect data from threats and attacks in the real world.

What you will learn
  • Study data privacy, threats, and attacks across different machine learning phases
  • Explore Uber and Apple cases for applying differential privacy and enhancing data security
  • Discover IID and non-IID data sets as well as data categories
  • Use open-source tools for federated learning (FL) and explore FL algorithms and benchmarks
  • Understand secure multiparty computation with PSI for large data
  • Get up to speed with confidential computation and find out how it helps data in memory attacks
Who this book is for

This book is for data scientists, machine learning engineers, and privacy engineers who have working knowledge of mathematics as well as basic knowledge in any one of the ML frameworks (TensorFlow, PyTorch, or scikit-learn).

Table of Contents
  1. Introduction to Data Privacy, Privacy threats and breaches
  2. Machine Learning Phases and privacy threats/attacks in each phase
  3. Overview of Privacy Preserving Data Analysis and Introduction to Differential Privacy
  4. Differential Privacy Algorithms, Pros and Cons
  5. Developing Applications with Different Privacy using open source frameworks
  6. Need for Federated Learning and implementing Federated Learning using open source frameworks
  7. Federated Learning benchmarks, startups and next opportunity
  8. Homomorphic Encryption and Secure Multiparty Computation
  9. Confidential computing - what, why and current state
  10. Privacy Preserving in Large Language Models

 

詳細資料

  • ISBN:9781800564671
  • 規格:平裝 / 402頁 / 23.5 x 19.05 x 2.08 cm / 普通級 / 初版
  • 出版地:美國
贊助商廣告
 
金石堂 - 今日66折
氣炸鍋烘焙:餅乾酥脆.蛋糕柔軟,32道成功率100%的超好吃氣炸鍋點心【隨書附贈】<台式點心氣炸食譜>
作者:金子恩
出版社:采實文化事業股份有限公司
出版日期:2019-10-31
66折: $ 251 
金石堂 - 今日66折
個人實相的本質有聲書第12 輯
作者:許添盛主講
出版社:賽斯文化
出版日期:2018-06-01
66折: $ 660 
金石堂 - 今日66折
四大文明神話套書(四冊):《美索不達米亞神話》、《埃及神話》、《印度神話》、《中國神話》
作者:席路德
出版社:漫遊者
出版日期:2023-08-14
66折: $ 950 
金石堂 - 今日66折
健康之道有聲第4輯﹝2015年新版﹞
作者:許添盛醫師主講
出版社:賽斯文化
出版日期:2015-11-20
66折: $ 660 
 
Taaze 讀冊生活 - 暢銷排行榜
Fountain新活水:Our Team, Our Taiwan! 2024世界棒球12強賽冠軍專刊
出版社:中華文化總會
出版日期:2025-01-08
$ 270 
博客來 - 暢銷排行榜
世界上最透明的故事(日本出版界話題作,只有紙本書可以體驗的感動)
作者:杉井光
出版社:皇冠
出版日期:2024-09-30
$ 284 
博客來 - 暢銷排行榜
特殊傳說Ⅲ vol.10
出版日期:2025-02-05
$ 252 
博客來 - 暢銷排行榜
SPY×FAMILY 間諜家家酒 14 (首刷限定版)
出版日期:2025-02-04
$ 212 
 
金石堂 - 新書排行榜
WIND BREAKER—防風少年—(11)
作者:にいさとる
出版社:尖端漫畫
出版日期:2025-02-07
$ 119 
Taaze 讀冊生活 - 新書排行榜
海上奇談錄
作者:紫夢
出版社:今古傳奇(滾石移動)
出版日期:2025-01-17
$ 180 
Taaze 讀冊生活 - 新書排行榜
天青色等煙雨
作者:王鴻豔
出版社:今古傳奇(滾石移動)
出版日期:2025-01-17
$ 150 
Taaze 讀冊生活 - 新書排行榜
美妝博主宮廷升職記
作者:兔野
出版社:今古傳奇(滾石移動)
出版日期:2025-01-17
$ 180 
 

©2025 FindBook.com.tw -  購物比價  找書網  找車網  服務條款  隱私權政策