購物比價找書網找車網
FindBook
排序:
 
 有 1 項符合

Aravilli

的圖書
Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats
$ 2474
Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats
作者:Aravilli 
出版社:Packt Publishing
出版日期:2024-05-24
語言:英文   規格:平裝 / 402頁 / 23.5 x 19.05 x 2.08 cm / 普通級/ 初版
博客來 博客來 - 網際網路  - 來源網頁  
圖書介紹看圖書介紹
圖書介紹 - 資料來源:博客來   評分:
圖書名稱:Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats

內容簡介

Gain hands-on experience in data privacy and privacy-preserving machine learning with open-source ML frameworks, while exploring techniques and algorithms to protect sensitive data from privacy breaches

Key Features
  • Understand machine learning privacy risks and employ machine learning algorithms to safeguard data against breaches
  • Develop and deploy privacy-preserving ML pipelines using open-source frameworks
  • Gain insights into confidential computing and its role in countering memory-based data attacks
  • Purchase of the print or Kindle book includes a free PDF eBook
Book Description

Privacy regulations are evolving each year and compliance with privacy regulations is mandatory for every enterprise. Machine learning engineers are required to not only analyze large amounts of data to gain crucial insights, but also comply with privacy regulations to protect sensitive data. This may seem quite challenging considering the large volume of data involved and lack of in-depth expertise in privacy-preserving machine learning.

This book delves into data privacy, machine learning privacy threats, and real-world cases of privacy-preserving machine learning, as well as open-source frameworks for implementation. You’ll be guided through developing anti-money laundering solutions via federated learning and differential privacy. Dedicated sections also address data in-memory attacks and strategies for safeguarding data and ML models. The book concludes by discussing the necessity of confidential computation, privacy-preserving machine learning benchmarks, and cutting-edge research.

By the end of this machine learning book, you’ll be well-versed in privacy-preserving machine learning and know how to effectively protect data from threats and attacks in the real world.

What you will learn
  • Study data privacy, threats, and attacks across different machine learning phases
  • Explore Uber and Apple cases for applying differential privacy and enhancing data security
  • Discover IID and non-IID data sets as well as data categories
  • Use open-source tools for federated learning (FL) and explore FL algorithms and benchmarks
  • Understand secure multiparty computation with PSI for large data
  • Get up to speed with confidential computation and find out how it helps data in memory attacks
Who this book is for

This book is for data scientists, machine learning engineers, and privacy engineers who have working knowledge of mathematics as well as basic knowledge in any one of the ML frameworks (TensorFlow, PyTorch, or scikit-learn).

Table of Contents
  1. Introduction to Data Privacy, Privacy threats and breaches
  2. Machine Learning Phases and privacy threats/attacks in each phase
  3. Overview of Privacy Preserving Data Analysis and Introduction to Differential Privacy
  4. Differential Privacy Algorithms, Pros and Cons
  5. Developing Applications with Different Privacy using open source frameworks
  6. Need for Federated Learning and implementing Federated Learning using open source frameworks
  7. Federated Learning benchmarks, startups and next opportunity
  8. Homomorphic Encryption and Secure Multiparty Computation
  9. Confidential computing - what, why and current state
  10. Privacy Preserving in Large Language Models

 

詳細資料

  • ISBN:9781800564671
  • 規格:平裝 / 402頁 / 23.5 x 19.05 x 2.08 cm / 普通級 / 初版
  • 出版地:美國
贊助商廣告
 
金石堂 - 今日66折
賴宇凡健康養生:要瘦就瘦,要健康就健康系列套書(三冊)
作者:賴宇凡
出版社:如果
出版日期:2017-05-15
66折: $ 693 
金石堂 - 今日66折
玫瑰聖經圖譜解讀
作者:王國良
出版社:莫克文化事業股份有限公司
出版日期:2022-12-22
66折: $ 581 
金石堂 - 今日66折
10 種洞察:洞察,認清世界的真實面目,當個聰明人。直觀真相,裝糊塗也別真糊塗。
作者:王可越
出版社:大是文化有限公司
出版日期:2024-01-30
66折: $ 263 
金石堂 - 今日66折
Canon DPP 4.0完全圖解
作者:DIGIPHOTO編輯部
出版社:流行風出版社
出版日期:2014-09-27
66折: $ 218 
 
金石堂 - 暢銷排行榜
四季姊妹 無修正
作者:あきのそら
出版社:未來數位有限公司
出版日期:2024-10-30
$ 253 
金石堂 - 暢銷排行榜
我親愛的怪人R(全)
作者:加藤スス
出版社:青文出版社股份有限公司
出版日期:2024-11-04
$ 111 
Taaze 讀冊生活 - 暢銷排行榜
逆思維:華頓商學院最具影響力的教授,突破人生盲點的全局思考
作者:亞當.格蘭特
出版社:平安文化有限公司
出版日期:2022-07-04
$ 331 
博客來 - 暢銷排行榜
原子習慣:細微改變帶來巨大成就的實證法則
作者:詹姆斯‧克利爾 (James Clear)
出版社:方智
出版日期:2019-06-01
$ 260 
 
博客來 - 新書排行榜
屁屁偵探讀本11 新的怪盜
出版日期:2024-11-04
$ 237 
Taaze 讀冊生活 - 新書排行榜
2025【循序漸進完勝攻略】升科大四技二專基本電學(含實習)總複習測驗卷[升科大四技二專]
作者:陳新
出版社:千華數位文化股份有限公司
出版日期:2024-09-20
$ 162 
博客來 - 新書排行榜
某某 戲劇寫真書 The On1y One Photobook
$ 379 
博客來 - 新書排行榜
生命中最大的寶藏就是你自己Stand by Yourself
作者:曾寶儀
出版社:天下文化
出版日期:2024-10-31
$ 331 
 

©2024 FindBook.com.tw -  購物比價  找書網  找車網  服務條款  隱私權政策