購物比價找書網找車網
FindBook
排序:
 
 有 1 項符合

Aravilli

的圖書
Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats
$ 2474
Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats
作者:Aravilli 
出版社:Packt Publishing
出版日期:2024-05-24
語言:英文   規格:平裝 / 402頁 / 23.5 x 19.05 x 2.08 cm / 普通級/ 初版
博客來 博客來 - 科技與應用科學總論  - 來源網頁  
圖書介紹看圖書介紹
圖書介紹 - 資料來源:博客來   評分:
圖書名稱:Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats

內容簡介

Gain hands-on experience in data privacy and privacy-preserving machine learning with open-source ML frameworks, while exploring techniques and algorithms to protect sensitive data from privacy breaches

Key Features
  • Understand machine learning privacy risks and employ machine learning algorithms to safeguard data against breaches
  • Develop and deploy privacy-preserving ML pipelines using open-source frameworks
  • Gain insights into confidential computing and its role in countering memory-based data attacks
  • Purchase of the print or Kindle book includes a free PDF eBook
Book Description

Privacy regulations are evolving each year and compliance with privacy regulations is mandatory for every enterprise. Machine learning engineers are required to not only analyze large amounts of data to gain crucial insights, but also comply with privacy regulations to protect sensitive data. This may seem quite challenging considering the large volume of data involved and lack of in-depth expertise in privacy-preserving machine learning.

This book delves into data privacy, machine learning privacy threats, and real-world cases of privacy-preserving machine learning, as well as open-source frameworks for implementation. You’ll be guided through developing anti-money laundering solutions via federated learning and differential privacy. Dedicated sections also address data in-memory attacks and strategies for safeguarding data and ML models. The book concludes by discussing the necessity of confidential computation, privacy-preserving machine learning benchmarks, and cutting-edge research.

By the end of this machine learning book, you’ll be well-versed in privacy-preserving machine learning and know how to effectively protect data from threats and attacks in the real world.

What you will learn
  • Study data privacy, threats, and attacks across different machine learning phases
  • Explore Uber and Apple cases for applying differential privacy and enhancing data security
  • Discover IID and non-IID data sets as well as data categories
  • Use open-source tools for federated learning (FL) and explore FL algorithms and benchmarks
  • Understand secure multiparty computation with PSI for large data
  • Get up to speed with confidential computation and find out how it helps data in memory attacks
Who this book is for

This book is for data scientists, machine learning engineers, and privacy engineers who have working knowledge of mathematics as well as basic knowledge in any one of the ML frameworks (TensorFlow, PyTorch, or scikit-learn).

Table of Contents
  1. Introduction to Data Privacy, Privacy threats and breaches
  2. Machine Learning Phases and privacy threats/attacks in each phase
  3. Overview of Privacy Preserving Data Analysis and Introduction to Differential Privacy
  4. Differential Privacy Algorithms, Pros and Cons
  5. Developing Applications with Different Privacy using open source frameworks
  6. Need for Federated Learning and implementing Federated Learning using open source frameworks
  7. Federated Learning benchmarks, startups and next opportunity
  8. Homomorphic Encryption and Secure Multiparty Computation
  9. Confidential computing - what, why and current state
  10. Privacy Preserving in Large Language Models

 

詳細資料

  • ISBN:9781800564671
  • 規格:平裝 / 402頁 / 23.5 x 19.05 x 2.08 cm / 普通級 / 初版
  • 出版地:美國
贊助商廣告
 
金石堂 - 今日66折
心中有數,腳下有路:用數學思維解讀世界、解決生活中的難題
作者:劉雪峰
出版社:如何出版社
出版日期:2023-05-01
66折: $ 205 
金石堂 - 今日66折
叛逆有理、獨立無罪:掙脫以愛為名的親情綑綁
作者:陳志恆
出版社:圓神出版社
出版日期:2018-12-01
66折: $ 185 
金石堂 - 今日66折
人善被犬欺:如何得到尊重、畫下界線,贏得你應有的成功(附「人太好」檢測)
作者:馬丁.維爾勒
出版社:究竟出版社股份有限公司
出版日期:2023-01-01
66折: $ 297 
金石堂 - 今日66折
快眠地圖:按圖索驥保你一生舒眠!高效工作者必備
作者:角谷Ryo
出版社:如何出版社
出版日期:2023-01-01
66折: $ 251 
 
博客來 - 暢銷排行榜
城與不確定的牆(平裝)
作者:村上春樹
出版社:時報出版
出版日期:2024-11-23
$ 537 
金石堂 - 暢銷排行榜
親吻黎明之花(01)
作者:もちゃろ
出版社:青文出版社股份有限公司
出版日期:2025-01-09
$ 111 
Taaze 讀冊生活 - 暢銷排行榜
底層邏輯:看清這個世界的底牌
作者:劉潤
出版社:時報文化出版企業股份有限公司
出版日期:2022-03-29
$ 316 
金石堂 - 暢銷排行榜
在紙船中入眠(下)
作者:八田てき
出版社:尖端漫畫
出版日期:2024-12-10
$ 216 
 
博客來 - 新書排行榜
有時幸,有時傷(首刷限定「閱讀逗點卡」)
作者:張西
出版社:三采
出版日期:2024-12-27
$ 331 
金石堂 - 新書排行榜
愛我的另一個你(全)
作者:高城リョウ
出版社:東立出版社
出版日期:2025-01-31
$ 143 
金石堂 - 新書排行榜
那女孩的內在
作者:和馬村政
出版社:未來數位有限公司
出版日期:2025-01-08
$ 300 
 

©2025 FindBook.com.tw -  購物比價  找書網  找車網  服務條款  隱私權政策