一、虛數的誕生歷程
自然數
零
負數
負數的乘法
有理數 ①∼②
無理數
實數
Column 1 小數的表示法誕生於16世紀
Column 2 畢達哥拉斯認為有理數是數的一切
Column 3 古代美索不達米亞黏土版刻畫的 2
Column 4 古人是這樣作平方根的圖
Column 5 證明 2是無理數
Column 6 用分數表示 2的方法—連分數
Column 7 何謂方程式?
Topics 實數的完成與無窮的概念
二、何謂虛數
虛數是什麼?
解不開的問題
虛數的誕生 ①∼②
虛數獲得市民權
Column 8 「二次方程式」不一定有實數解
Column 9 有4000年歷史的「二次方程式」
Column 10 以二次方程式的「公式解」求解卡當諾問題
Column 11 虛數誕生的契機是16世紀的 「數學擂台」
Column 12 卡當諾喜歡賭博,還促成 機率論發展
Q&A 1 複數平面為何又稱「高斯平面」?
Q&A 2 虛數能比較大小嗎?
三、虛數與複數
複數的表示方式
複數的加法
複數的乘法 ①∼②
以虛數求解奇妙的謎題 ①∼②
高斯與複數 ①∼②
數擴張的終點站
Column 13 以複數平面確認
「卡當諾問題」
Column 14 為什麼不是「負負得負」?
Column 15 複數的「極式」是什麼?
Column 16 在幾何學上運用複數平面
Column 17 複數平面的反轉與無窮遠點
Q&A 3 -1的四次方根、八次方根、十六次方根該如何計算?
Column 18 證明「代數基本定理」
Column 19 碎形與複數
Column 20 以複數的牛頓法求解碎形
Topics 黃金比例、正五邊形與複數
四、人類的至寶歐拉公式
三角函數
泰勒展開 ①∼②
何謂虛數次方?
歐拉的兩個公式
π、i與e
鑑賞歐拉公式
為什麼歐拉公式重要?
Column 21 何謂三角函數?
Column 22 何謂自然對數的底數「e」?
Column 23 何謂圓周率「π」?
Column 24 為近代數學奠基的天才
數學家歐拉
五、虛數與物理學
光、天體與虛數
四維時空與虛數 ①∼②
未知粒子與虛數
量子力學與虛數 ①∼③
Q&A 4 為什麼不存在的虛數跟自然界有關?
Topics 量子力學與複數
Topics 小林-益川理論與虛數