購物比價找書網找車網
FindBook  
 有 1 項符合

Hands-On Genetic Algorithms with Python - Second Edition: Apply genetic algorithms to solve real-world AI and machine learning problems

的圖書
Hands-On Genetic Algorithms with Python - Second Edition: Apply genetic algorithms to solve real-world AI and machine learning problems Hands-On Genetic Algorithms with Python - Second Edition: Apply genetic algorithms to solve real-world AI and machine learning problems

作者:Wirsansky 
出版社:Packt Publishing
出版日期:2024-07-12
語言:英文   規格:平裝 / 418頁 / 23.5 x 19.05 x 2.16 cm / 普通級/ 初版
圖書選購
型式價格供應商所屬目錄
 
$ 2199
博客來 博客來
數學
圖書介紹 - 資料來源:博客來   評分:
圖書名稱:Hands-On Genetic Algorithms with Python - Second Edition: Apply genetic algorithms to solve real-world AI and machine learning problems

內容簡介

Explore the ever-growing world of genetic algorithms to build and enhance AI applications involving search, optimization, machine learning, deep learning, NLP, and XAI using Python libraries

Key Features:

- Learn how to implement genetic algorithms using Python libraries DEAP, scikit-learn, and NumPy

- Take advantage of cloud computing technology to increase the performance of your solutions

- Discover bio-inspired algorithms such as particle swarm optimization (PSO) and NEAT

- Purchase of the print or Kindle book includes a free PDF eBook

Book Description:

Written by Eyal Wirsansky, a senior data scientist and AI researcher with over 25 years of experience and a research background in genetic algorithms and neural networks, Hands-On Genetic Algorithms with Python offers expert insights and practical knowledge to master genetic algorithms.

After an introduction to genetic algorithms and their principles of operation, you’ll find out how they differ from traditional algorithms and the types of problems they can solve, followed by applying them to search and optimization tasks such as planning, scheduling, gaming, and analytics. As you progress, you’ll delve into explainable AI and apply genetic algorithms to AI to improve machine learning and deep learning models, as well as tackle reinforcement learning and NLP tasks. This updated second edition further expands on applying genetic algorithms to NLP and XAI and speeding up genetic algorithms with concurrency and cloud computing. You’ll also get to grips with the NEAT algorithm. The book concludes with an image reconstruction project and other related technologies for future applications.

By the end of this book, you’ll have gained hands-on experience in applying genetic algorithms across a variety of fields, with emphasis on artificial intelligence with Python.

What You Will Learn:

- Use genetic algorithms to solve planning, scheduling, gaming, and analytics problems

- Create reinforcement learning, NLP, and explainable AI applications

- Enhance the performance of ML models and optimize deep learning architecture

- Deploy genetic algorithms using client-server architectures, enhancing scalability and computational efficiency

- Explore how images can be reconstructed using a set of semi-transparent shapes

- Delve into topics like elitism, niching, and multiplicity in genetic solutions to enhance optimization strategies and solution diversity

Who this book is for:

If you’re a data scientist, software developer, or AI enthusiast who wants to break into the world of genetic algorithms and apply them to real-world, intelligent applications as quickly as possible, this book is for you. Working knowledge of the Python programming language is required to get started with this book.

Table of Contents

- An Introduction to Genetic Algorithms

- Understanding the Key Components of Genetic Algorithms

- Using the DEAP Framework

- Combinatorial Optimization

- Constraint Satisfaction

- Linking and Posing a Character

- Basic Character Animation

- The Walk Cycle

- Sound and Lip-Syncing

- Prop Interaction with Dynamic Constraints

- Optimizing Continuous Functions

- Enhancing Machine Learning Models Using Feature Selection

- Hyperparameter Tuning Machine Learning Models

- Architecture Optimization of Deep Learning Networks

- Reinforcement Learning with Genetic Algorithms

- Natural Language Processing

- Explainable AI and Counterfactuals

- Speeding Up Genetic Algorithms with Concurrency

- Harnessing the Cloud

- Genetic Image Reconstruction

- Other Evolutionary and Bio-Inspired Computation Techniques

 

詳細資料

  • ISBN:9781805123798
  • 規格:平裝 / 418頁 / 23.5 x 19.05 x 2.16 cm / 普通級 / 初版
  • 出版地:美國
贊助商廣告
 
金石堂 - 今日66折
3個月減10公斤!無麩質瘦身餐:熱銷2萬本,好吃又好做!IG減重專家的「低醣高蛋白」超效飲食,100天、400餐全圖解
作者:崔善女
出版社:瑞麗美人國際媒體
出版日期:2022-10-13
66折: $ 429 
金石堂 - 今日66折
爸媽的第一本不尷尬性教育指南:減少衝突的70堂性觀念X性暴力關鍵對話課,跟錯誤百出的「網路老師」說bye-bye
作者:盧河延、申淵淀、李水智
出版社:台灣廣廈有聲圖書有限公司
出版日期:2020-07-16
66折: $ 297 
金石堂 - 今日66折
對付職場神經病的社畜生存指南:看穿難搞主管&戲精同事的行為,提供69條心理&行動對策,打造百毒不侵的職場機智生活!
作者:職涯導航網
出版社:財經傳訊
出版日期:2022-06-09
66折: $ 263 
金石堂 - 今日66折
寫下歷史的世界500步道
66折: $ 495 
 
博客來 - 暢銷排行榜
佐佐木與宮野 (10)
作者:春園ショウ
出版社:台灣角川
出版日期:2025-03-27
$ 119 
博客來 - 暢銷排行榜
世界上最透明的故事(日本出版界話題作,只有紙本書可以體驗的感動)
作者:杉井光
出版社:皇冠
出版日期:2024-09-30
$ 284 
金石堂 - 暢銷排行榜
治癒悖論(全)
作者:昼寝シアン
出版社:東立出版社
出版日期:2023-05-24
$ 143 
博客來 - 暢銷排行榜
你的人生,他們六個說了算!:決定你一生的六種物質
作者:大衛.JP.菲利浦斯
出版社:平安文化
出版日期:2024-12-30
$ 284 
 
博客來 - 新書排行榜
天國大魔境 10
作者:石黒正数
出版社:東立
出版日期:2025-04-10
$ 133 
博客來 - 新書排行榜
沉默的艦隊 新裝版(12)
作者:川口開治
出版社:尖端
出版日期:2025-04-11
$ 340 
 

©2025 FindBook.com.tw -  購物比價  找書網  找車網  服務條款  隱私權政策