購物比價找書網找車網
FindBook
排序:
 
 有 1 項符合

Wirsansky

的圖書
Hands-On Genetic Algorithms with Python - Second Edition: Apply genetic algorithms to solve real-world AI and machine learning problems
$ 2199
Hands-On Genetic Algorithms with Python - Second Edition: Apply genetic algorithms to solve real-world AI and machine learning problems
作者:Wirsansky 
出版社:Packt Publishing
出版日期:2024-07-12
語言:英文   規格:平裝 / 418頁 / 23.5 x 19.05 x 2.16 cm / 普通級/ 初版
博客來 博客來 - 程式語言  - 來源網頁  
圖書介紹看圖書介紹
圖書介紹 - 資料來源:博客來   評分:
圖書名稱:Hands-On Genetic Algorithms with Python - Second Edition: Apply genetic algorithms to solve real-world AI and machine learning problems

內容簡介

Explore the ever-growing world of genetic algorithms to build and enhance AI applications involving search, optimization, machine learning, deep learning, NLP, and XAI using Python libraries

Key Features:

- Learn how to implement genetic algorithms using Python libraries DEAP, scikit-learn, and NumPy

- Take advantage of cloud computing technology to increase the performance of your solutions

- Discover bio-inspired algorithms such as particle swarm optimization (PSO) and NEAT

- Purchase of the print or Kindle book includes a free PDF eBook

Book Description:

Written by Eyal Wirsansky, a senior data scientist and AI researcher with over 25 years of experience and a research background in genetic algorithms and neural networks, Hands-On Genetic Algorithms with Python offers expert insights and practical knowledge to master genetic algorithms.

After an introduction to genetic algorithms and their principles of operation, you’ll find out how they differ from traditional algorithms and the types of problems they can solve, followed by applying them to search and optimization tasks such as planning, scheduling, gaming, and analytics. As you progress, you’ll delve into explainable AI and apply genetic algorithms to AI to improve machine learning and deep learning models, as well as tackle reinforcement learning and NLP tasks. This updated second edition further expands on applying genetic algorithms to NLP and XAI and speeding up genetic algorithms with concurrency and cloud computing. You’ll also get to grips with the NEAT algorithm. The book concludes with an image reconstruction project and other related technologies for future applications.

By the end of this book, you’ll have gained hands-on experience in applying genetic algorithms across a variety of fields, with emphasis on artificial intelligence with Python.

What You Will Learn:

- Use genetic algorithms to solve planning, scheduling, gaming, and analytics problems

- Create reinforcement learning, NLP, and explainable AI applications

- Enhance the performance of ML models and optimize deep learning architecture

- Deploy genetic algorithms using client-server architectures, enhancing scalability and computational efficiency

- Explore how images can be reconstructed using a set of semi-transparent shapes

- Delve into topics like elitism, niching, and multiplicity in genetic solutions to enhance optimization strategies and solution diversity

Who this book is for:

If you’re a data scientist, software developer, or AI enthusiast who wants to break into the world of genetic algorithms and apply them to real-world, intelligent applications as quickly as possible, this book is for you. Working knowledge of the Python programming language is required to get started with this book.

Table of Contents

- An Introduction to Genetic Algorithms

- Understanding the Key Components of Genetic Algorithms

- Using the DEAP Framework

- Combinatorial Optimization

- Constraint Satisfaction

- Linking and Posing a Character

- Basic Character Animation

- The Walk Cycle

- Sound and Lip-Syncing

- Prop Interaction with Dynamic Constraints

- Optimizing Continuous Functions

- Enhancing Machine Learning Models Using Feature Selection

- Hyperparameter Tuning Machine Learning Models

- Architecture Optimization of Deep Learning Networks

- Reinforcement Learning with Genetic Algorithms

- Natural Language Processing

- Explainable AI and Counterfactuals

- Speeding Up Genetic Algorithms with Concurrency

- Harnessing the Cloud

- Genetic Image Reconstruction

- Other Evolutionary and Bio-Inspired Computation Techniques

 

詳細資料

  • ISBN:9781805123798
  • 規格:平裝 / 418頁 / 23.5 x 19.05 x 2.16 cm / 普通級 / 初版
  • 出版地:美國
贊助商廣告
 
金石堂 - 今日66折
未知的實相有聲書第1輯(新版)
作者:許添盛醫師主講
出版社:賽斯文化
出版日期:2019-05-06
66折: $ 660 
金石堂 - 今日66折
未知的實相有聲書【第8輯】
作者:許添盛
出版社:賽斯文化
出版日期:2010-05-01
66折: $ 581 
金石堂 - 今日66折
我愛的人,要走(有聲書)
作者:許添盛主講
出版社:賽斯文化
出版日期:2015-10-01
66折: $ 660 
金石堂 - 今日66折
高中生延伸教材最愛的參考讀物套書(3冊):《沒被抓到也算作弊嗎?》、《哲學大師寫給每個人的政治思考課》、《親愛的孔子老師》
作者:布魯斯.韋恩斯坦
出版社:漫遊者
出版日期:2020-08-03
66折: $ 614 
 
金石堂 - 暢銷排行榜
妄想老師(14)
作者:春輝
出版社:青文出版社股份有限公司
出版日期:2025-01-16
$ 111 
博客來 - 暢銷排行榜
迷宮飯 世界導覽冒險者聖經 完全版(全)
出版日期:2025-01-22
$ 395 
博客來 - 暢銷排行榜
蛤蟆先生去看心理師(暢銷300萬冊!英國心理諮商經典,附《蛤蟆先生勇氣藏書卡》組)
作者:羅伯.狄保德 (Robert de Board)
出版社:三采
出版日期:2022-01-26
$ 316 
博客來 - 暢銷排行榜
你願意,人生就會值得:蔡康永的情商課3
作者:蔡康永
出版社:如何
出版日期:2024-08-01
$ 316 
 
博客來 - 新書排行榜
奈奈與薰的SM日記(18)END
作者:甘詰留太
出版社:青文
出版日期:2025-01-20
$ 110 
Taaze 讀冊生活 - 新書排行榜
塔羅解讀入門課:上萬個案經驗集結,來自安妮奇異星球的內在指引練習
作者:馮珍萱(安妮)
出版社:地平線文化
出版日期:2025-01-18
$ 364 
金石堂 - 新書排行榜
找出飆股穩穩賺:臺大工程師的K線交易筆記,從線圖找出「飛龍訊號」,看穿主力動向,找出下一支大漲股【隨書贈價值1980元教學影片】
作者:股票莊爸
出版社:聯經出版事業股份有限公司
出版日期:2024-12-12
$ 356 
金石堂 - 新書排行榜
再見了,過去的我:本屋大賞得主、暖淚系作家小川糸滋潤心脾之作。首刷附贈{小川糸印刷簽名扉頁}
作者:小川糸
出版社:皇冠文化出版有限公司
出版日期:2025-01-17
$ 284 
 

©2025 FindBook.com.tw -  購物比價  找書網  找車網  服務條款  隱私權政策