購物比價找書網找車網
FindBook
排序:
 
 有 1 項符合

Hands-On Genetic Algorithms with Python - Second Edition: Apply genetic algorithms to solve real-world AI and machine learning problems

的圖書
Hands-On Genetic Algorithms with Python - Second Edition: Apply genetic algorithms to solve real-world AI and machine learning problems
$ 2199
Hands-On Genetic Algorithms with Python - Second Edition: Apply genetic algorithms to solve real-world AI and machine learning problems
作者:Wirsansky 
出版社:Packt Publishing
出版日期:2024-07-12
語言:英文   規格:平裝 / 418頁 / 23.5 x 19.05 x 2.16 cm / 普通級/ 初版
博客來 博客來 - 數學  - 來源網頁  
圖書介紹看圖書介紹
圖書介紹 - 資料來源:博客來   評分:
圖書名稱:Hands-On Genetic Algorithms with Python - Second Edition: Apply genetic algorithms to solve real-world AI and machine learning problems

內容簡介

Explore the ever-growing world of genetic algorithms to build and enhance AI applications involving search, optimization, machine learning, deep learning, NLP, and XAI using Python libraries

Key Features:

- Learn how to implement genetic algorithms using Python libraries DEAP, scikit-learn, and NumPy

- Take advantage of cloud computing technology to increase the performance of your solutions

- Discover bio-inspired algorithms such as particle swarm optimization (PSO) and NEAT

- Purchase of the print or Kindle book includes a free PDF eBook

Book Description:

Written by Eyal Wirsansky, a senior data scientist and AI researcher with over 25 years of experience and a research background in genetic algorithms and neural networks, Hands-On Genetic Algorithms with Python offers expert insights and practical knowledge to master genetic algorithms.

After an introduction to genetic algorithms and their principles of operation, you’ll find out how they differ from traditional algorithms and the types of problems they can solve, followed by applying them to search and optimization tasks such as planning, scheduling, gaming, and analytics. As you progress, you’ll delve into explainable AI and apply genetic algorithms to AI to improve machine learning and deep learning models, as well as tackle reinforcement learning and NLP tasks. This updated second edition further expands on applying genetic algorithms to NLP and XAI and speeding up genetic algorithms with concurrency and cloud computing. You’ll also get to grips with the NEAT algorithm. The book concludes with an image reconstruction project and other related technologies for future applications.

By the end of this book, you’ll have gained hands-on experience in applying genetic algorithms across a variety of fields, with emphasis on artificial intelligence with Python.

What You Will Learn:

- Use genetic algorithms to solve planning, scheduling, gaming, and analytics problems

- Create reinforcement learning, NLP, and explainable AI applications

- Enhance the performance of ML models and optimize deep learning architecture

- Deploy genetic algorithms using client-server architectures, enhancing scalability and computational efficiency

- Explore how images can be reconstructed using a set of semi-transparent shapes

- Delve into topics like elitism, niching, and multiplicity in genetic solutions to enhance optimization strategies and solution diversity

Who this book is for:

If you’re a data scientist, software developer, or AI enthusiast who wants to break into the world of genetic algorithms and apply them to real-world, intelligent applications as quickly as possible, this book is for you. Working knowledge of the Python programming language is required to get started with this book.

Table of Contents

- An Introduction to Genetic Algorithms

- Understanding the Key Components of Genetic Algorithms

- Using the DEAP Framework

- Combinatorial Optimization

- Constraint Satisfaction

- Linking and Posing a Character

- Basic Character Animation

- The Walk Cycle

- Sound and Lip-Syncing

- Prop Interaction with Dynamic Constraints

- Optimizing Continuous Functions

- Enhancing Machine Learning Models Using Feature Selection

- Hyperparameter Tuning Machine Learning Models

- Architecture Optimization of Deep Learning Networks

- Reinforcement Learning with Genetic Algorithms

- Natural Language Processing

- Explainable AI and Counterfactuals

- Speeding Up Genetic Algorithms with Concurrency

- Harnessing the Cloud

- Genetic Image Reconstruction

- Other Evolutionary and Bio-Inspired Computation Techniques

 

詳細資料

  • ISBN:9781805123798
  • 規格:平裝 / 418頁 / 23.5 x 19.05 x 2.16 cm / 普通級 / 初版
  • 出版地:美國
贊助商廣告
 
 
金石堂 - 暢銷排行榜
PUNKS△TRIANGLE(全)
作者:沖田有帆
出版社:東立出版社
出版日期:2024-12-11
$ 145 
博客來 - 暢銷排行榜
在紙船中入眠(下)
作者:八田てき
出版社:尖端
出版日期:2024-12-10
$ 204 
金石堂 - 暢銷排行榜
我的英雄學院 (首刷限定版) 41
作者:堀越耕平
出版社:東立出版社
出版日期:2025-01-31
$ 170 
金石堂 - 暢銷排行榜
PASSION(2)
作者:KangJak
出版社:台灣角川股份有限公司
出版日期:2024-12-19
$ 300 
 
博客來 - 新書排行榜
寫作的靈現:AI時代寫手的修煉與想像力
出版日期:2024-12-17
$ 284 
Taaze 讀冊生活 - 新書排行榜
戴枷鎖的舞者
作者:方秋停
出版社:聯合文學出版社股份有限公司
出版日期:2024-12-19
$ 280 
Taaze 讀冊生活 - 新書排行榜
引路人.卷8(突破四千萬瀏覽人次超人氣本土原創漫畫,影視改編進行中!)
作者:羅寶、桑原
出版社:奇幻基地
出版日期:2024-10-10
$ 299 
Taaze 讀冊生活 - 新書排行榜
要是未曾相遇就好了(01)(超過400萬點閱!台灣LINE WEBTOON人氣原創漫畫,影視化進行中)
作者:M蜥
出版社:春光
出版日期:2024-12-05
$ 285 
 

©2024 FindBook.com.tw -  購物比價  找書網  找車網  服務條款  隱私權政策