石墨烯
石墨烯塊很像鉛筆的鉛芯。誰能知道它含有如此強大、輕薄、有彈性,且具導電性的超級材料,讓地球上的其他材料相形失色?誰又能知道將石墨烯取出會如此容易?誰又知道這麼做可能會永遠改變我們的手機?
2010年諾貝爾物理獎得獎者之一海姆(Andre Geim),於諾貝爾演講的主題是「隨意走到石墨烯」。他承認,多年來他參與了許多不成功的計畫,結果最終他所追求的東西就隨機出現在這些計畫中。海姆在斯德哥爾摩大學演講時說道:「經過大約15年的時間,進行了24個左右的實驗。不出所料,大多數都慘敗。但有三個成功,那就是懸浮、壁虎膠帶和石墨烯。」這三個之中,懸浮和壁虎膠帶聽起來較有趣,但石墨烯席捲了科學界。
石墨烯常被暱稱為「超級材料」,是新一代所謂「奈米材料」中第一個也最令人振奮的材料。它是我們所知唯一由單層原子所組成的物質。石墨烯完全由碳組成,它是地球上最輕薄的材料,但也是最強韌的。據說一平方公尺的石墨烯層(一個原子厚度的碳層),可以讓一個吊床穩固、有彈性到可撐住一隻貓,儘管其重量只相當於貓的一根鬍鬚。石墨烯製的貓吊床也會是透明的,給人感覺貓好像是吊在半空中,此吊床的導電性比銅更佳。如果你相信市場炒作,石墨烯將有可能作為快速充電的「超級電容器」取代電池,終結手機電池的困境,讓我們在幾分鐘內將電動車充好電。
電子產品的未來
雖然海姆無法說是自己發現了石墨烯這個超級材料(因為其他科學家也早就知道它的存在,並快要能夠分離出石墨烯了),但他和他的諾貝爾獎共同得主諾沃肖洛夫(Konstantin Novoselov)找到了一個可靠但算不上商業化的方法來從石墨中取得石墨烯。他們所做的是拿一塊石墨(見第112頁),利用膠帶黏貼從表面剝離出一層石墨烯。石墨就是鉛筆芯裡的東西,基本上是由數十萬個石墨烯層的堆疊形成。每層之間的吸引力相當微弱。光是利用
膠帶就能剝離出幾層。直到海姆和諾沃肖洛夫他們仔細看了用來清潔石墨的膠帶時,才意識到這一點。
雖然關於究竟是誰在何時率先分離出石墨烯,有一些分歧,但毫無疑問的是,海姆與諾沃肖洛夫於2004年和2005年出版的論文,改變了許多科學家對材料的想法。在此之前,有些研究員原本不認為只有一個原子厚度的碳層會是穩定的。2005年的研究持續探討石墨烯非凡的電子特性,吸引了大量的關注,並出現大量的石墨烯電晶體和有彈性的電子產品,包括可彎曲的電話和太陽能電池。
2012年,洛杉磯加州大學的兩名研究員宣布,他們已經使用石墨烯做出微型超級電容器,類似非常迷你的持久電池,可在幾秒內充好電。
研究生卡迪(Maher El-Kady)意識到他讓燈泡在石墨烯中僅充電幾秒鐘,卻可點亮至少五分鐘。他和他的指導教授凱納(Richard Kaner)很快發現一種利用DVD 燒錄機來製作他們裝置的方法,他們一心想擴展其生產過程,使微小的能量來源可納入每件東西中,從微晶片到醫療植入物,如心律調節器。
石墨烯三明治
石墨烯是非常好的導電體,這要歸因於其平坦、鐵絲網狀結構的碳原子均具有一個自由電子。這些自由電子在表面飛馳,作為電荷載體。如果要說有什麼問題的話,那就是石墨烯導電性實在太高。晶片製造商用來做電腦晶片的半導體材料如矽(見第96頁),它們會在特定的條件下導電,但在其他條件下則不導電,其導電性可以被開啟或關閉。這就是為什麼材料科學家正著手添加雜質到石墨烯,或甚至把石墨烯夾到其他超薄材料之間,創造可調節導電性更佳的材料。
另一個問題是大量生產石墨烯是困難且不便宜的。當然,持續用膠帶剝離石墨烯塊是相當不實際的。而且,材料科學家也想取得更大的石墨烯層。一個更好的方法是化學氣相沉積法,這是將氣態碳原子附著到表面形成一層的方式,但此途徑需要極高的溫度。還有其他更便宜的方法已經過測試,包含工業規模的廚房攪拌機或用超音波從石墨塊分離出石墨烯層。
是不是有人提到懸浮?
所以這就是石墨烯。那海姆的其他實驗呢?他有次興起將水倒進實驗室的電磁鐵,竟然讓水發生懸浮。海姆有一次甚至放了小青蛙在懸浮的水球中。壁虎膠帶則是模仿了壁虎腳的黏性皮膚,但其效果並沒有真的壁虎腳那樣好,所以這研究並沒有得到進展。
3D 列印
3D列印似乎不像是會令人感到振奮的主題,但這卻忽略了3D列印非凡的可能性。從塑料汽車到水凝膠製成的仿生耳,這新科技幾乎沒有什麼限制。航太工程師甚至還列印出火箭和飛機的金屬零件。
在20世紀,製造業的重點是要大量生產。你設計了一個產品,你認為它大概會適合每個人,然後你找到了一個方法來大量生產此產品。大量生產的汽車、大量生產的櫻桃派,以及大量生產的電腦晶片。21世紀會發生什麼事?大量客製化的消費產品,為符合個體需求量身打造,整體供應。我們將不再被迫接受符合「一般人」(沒有特別針對某個人)的標準化產品。你想要不用轉動控制桿就能調整車子的駕駛座,使旅程乘坐舒適嗎?大量客製化可以讓你辦到。製造業如何適應以提供每個人所想要的,答案在於3D列印。
列印的承諾
列印長久以來一直是化學家的領域。幾千年前,印刷油墨是由天然材料製成,通常是含有碳的顏料。今日的印刷油墨是複雜的混合化學物質,包括色顏料、樹脂、防沫劑和增稠劑。同時,3D列印機可用任何東西來列印,從塑料到金屬都可以。有些3D列印機只能用一種材料(就像黑白印表機)來列印,而有些則可將不同材料結合在同一個物體裡,就像一台普通印表機結合了不同顏色的油墨。
所有的3D列印技術具備的共同特點是,它們可利用將三維物體分解成二維橫切面的資料庫訊息,逐層建立起自己的結構。電腦輔助設計(CAD)程式能讓產品設計師創造的複雜設計,快速列印出來,而非刻苦地組裝不勝其數的零件。航太工程師的最終夢想是能夠列印衛星。不過3D列印機已經創建的某些結構的確令人難以置信,如仿生耳、顱骨植入物(見第191頁「3D列印身體部位」)、火箭引擎元件和奈米機器,更不用說全尺寸的展示車。
3D 列印油墨
可靠的列印物件如汽車和火箭引擎,將需要仰賴金屬列印技術的進步。這是讓美國太空總署人員及歐洲太空總署感興趣的領域,這兩個單位成立了一個名為「驚奇」的計畫,來列印火箭和飛機零件。優點是更環保、製作過程不會產生廢物,以及能列印更複雜的金屬零件,因為它們是被逐層建立起來的。
3D列印過程與「油墨」所仰賴的技術,已經發展成一系列不同的3D列印技術。與舊式列印最為相似的製程是3D 噴墨列印,其於交替層中列印粉末與結合材料,形成豐富多樣的材質,包括塑膠與陶器。另一方面,液態樹脂固化運用紫外線光束活化樹脂,光束將設計逐層描繪到樹脂上,使樹脂凝固成預期的結構形狀。2014年聖地牙哥加州大學的研究員用此方法列印生物相容裝置,此裝置是由水凝膠製成的,具有類似肝臟的作用,可以檢測、捕捉血液中的毒素。
不過,也許最被廣泛使用的3D列印技術是熱熔沉積成型,此技術是將塑膠加熱以填入列印噴嘴,再將這半熔融材料往上層層堆疊。德國工程公司(EDAG)用熱塑性塑料為其外觀具有未來感的「創世紀」汽車建立架構,運用改良過的熱熔沉積成型製程,聲稱可以達到與利用碳纖維所打造的超輕、超強車身同樣的效果。有鑑於波音公司已經用碳纖維打造夢幻客機,何不造一台3D列印飛機呢?
按比例縮小
從龐然大物到微小之物,3D列印正在改變我們設計和創造的方式。電子裝置(見第96頁)的微型製造技術是相當具有前景的領域。現在已經可以列印鋰離子電池的電子電路和微型特性。電子愛好者也有能力快速設計與創造客製化的電子電路。群眾募資平台Kickstarter 委託Cartesian 公司開發一台列印機,能讓使用者將電路列印至不同材料上,包括布料,以製造可穿戴的電子產品。奈米科技研究員已經在調查可列印奈米機器的選項。其中有一種技術是使用原子力顯微鏡尖端,將分子印到表面上。然而,此方法難以控制「油墨」的流量。另一個可能的解決方案是靜電紡絲法,紡出帶電的聚合物到帶相反電荷的印刷表面上,讓圖案可併入表面,以控制材料附著的地方。
也難怪大家都為3D列印感到興奮,其創造的可能性是無止盡的。從客戶的觀點來看,也有明顯的好處(如不用大量生產、具有客製化座位的碳纖維車),甚至還有能完美符合的身體替代部位。