購物比價找書網找車網
FindBook
排序:
 
 有 1 項符合

aravilli

的圖書
Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats
$ 2474
Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats
作者:Aravilli 
出版社:Packt Publishing
出版日期:2024-05-24
語言:英文   規格:平裝 / 402頁 / 23.5 x 19.05 x 2.08 cm / 普通級/ 初版
博客來 博客來 - 科技與應用科學總論  - 來源網頁  
圖書介紹看圖書介紹
圖書介紹 - 資料來源:博客來   評分:
圖書名稱:Privacy-Preserving Machine Learning: A use-case-driven approach to building and protecting ML pipelines from privacy and security threats

內容簡介

Gain hands-on experience in data privacy and privacy-preserving machine learning with open-source ML frameworks, while exploring techniques and algorithms to protect sensitive data from privacy breaches

Key Features
  • Understand machine learning privacy risks and employ machine learning algorithms to safeguard data against breaches
  • Develop and deploy privacy-preserving ML pipelines using open-source frameworks
  • Gain insights into confidential computing and its role in countering memory-based data attacks
  • Purchase of the print or Kindle book includes a free PDF eBook
Book Description

Privacy regulations are evolving each year and compliance with privacy regulations is mandatory for every enterprise. Machine learning engineers are required to not only analyze large amounts of data to gain crucial insights, but also comply with privacy regulations to protect sensitive data. This may seem quite challenging considering the large volume of data involved and lack of in-depth expertise in privacy-preserving machine learning.

This book delves into data privacy, machine learning privacy threats, and real-world cases of privacy-preserving machine learning, as well as open-source frameworks for implementation. You’ll be guided through developing anti-money laundering solutions via federated learning and differential privacy. Dedicated sections also address data in-memory attacks and strategies for safeguarding data and ML models. The book concludes by discussing the necessity of confidential computation, privacy-preserving machine learning benchmarks, and cutting-edge research.

By the end of this machine learning book, you’ll be well-versed in privacy-preserving machine learning and know how to effectively protect data from threats and attacks in the real world.

What you will learn
  • Study data privacy, threats, and attacks across different machine learning phases
  • Explore Uber and Apple cases for applying differential privacy and enhancing data security
  • Discover IID and non-IID data sets as well as data categories
  • Use open-source tools for federated learning (FL) and explore FL algorithms and benchmarks
  • Understand secure multiparty computation with PSI for large data
  • Get up to speed with confidential computation and find out how it helps data in memory attacks
Who this book is for

This book is for data scientists, machine learning engineers, and privacy engineers who have working knowledge of mathematics as well as basic knowledge in any one of the ML frameworks (TensorFlow, PyTorch, or scikit-learn).

Table of Contents
  1. Introduction to Data Privacy, Privacy threats and breaches
  2. Machine Learning Phases and privacy threats/attacks in each phase
  3. Overview of Privacy Preserving Data Analysis and Introduction to Differential Privacy
  4. Differential Privacy Algorithms, Pros and Cons
  5. Developing Applications with Different Privacy using open source frameworks
  6. Need for Federated Learning and implementing Federated Learning using open source frameworks
  7. Federated Learning benchmarks, startups and next opportunity
  8. Homomorphic Encryption and Secure Multiparty Computation
  9. Confidential computing - what, why and current state
  10. Privacy Preserving in Large Language Models

 

詳細資料

  • ISBN:9781800564671
  • 規格:平裝 / 402頁 / 23.5 x 19.05 x 2.08 cm / 普通級 / 初版
  • 出版地:美國
贊助商廣告
 
金石堂 - 今日66折
完全指南 地球編年史全系列(八冊)
作者:撒迦利亞.西琴
出版社:新星球出版
出版日期:2021-08-02
66折: $ 2534 
金石堂 - 今日66折
調校心態:舉起手,伸開5指,跟自己擊掌,做自己最強的啦啦隊!全球千萬網友實證的轉念習慣
作者:梅爾.羅賓斯
出版社:采實文化事業股份有限公司
出版日期:2022-03-31
66折: $ 297 
金石堂 - 今日66折
魯迅經典(套書)
作者:魯迅
出版社:好優文化
出版日期:2022-10-17
66折: $ 2600 
金石堂 - 今日66折
葛瑞的囧日記9-12集套書
66折: $ 1003 
 
Taaze 讀冊生活 - 暢銷排行榜
世界上最透明的故事(日本出版界話題作,只有紙本書可以體驗的感動)
作者:杉井光
出版社:皇冠文化出版有限公司
出版日期:2024-09-30
$ 284 
金石堂 - 暢銷排行榜
【實證醫學 完整解析】糖尿病緩解心法:從減藥到停藥!肉菜冷飯定時定量飲食,讓你穩血糖、降三高、減體重!
作者:洪建德
出版社:原水文化事業股份有限公司
出版日期:2025-01-04
$ 435 
金石堂 - 暢銷排行榜
從內做起:頂尖領導大師淬鍊25年的10堂課
作者:約翰.麥斯威爾
出版社:天恩
出版日期:2020-11-04
$ 379 
博客來 - 暢銷排行榜
張忠謀自傳全集(上下冊)
作者:張忠謀
出版社:天下文化
出版日期:2024-11-29
$ 869 
 
Taaze 讀冊生活 - 新書排行榜
愛過的廢物
作者:陳沛珛
出版社:臉譜
出版日期:2025-01-04
$ 406 
金石堂 - 新書排行榜
戀染龍雨衣(全)限定版
作者:朔ヒロ
出版社:青文出版社股份有限公司
出版日期:2025-01-03
$ 150 
博客來 - 新書排行榜
afterglow 落日餘暉 全 (首刷限定版)
出版日期:2025-01-06
$ 200 
博客來 - 新書排行榜
輝達之道:黃仁勳打造晶片帝國,引領AI 浪潮的祕密
作者:金泰(Tae Kim)
出版社:商業周刊
出版日期:2025-01-03
$ 355 
 

©2025 FindBook.com.tw -  購物比價  找書網  找車網  服務條款  隱私權政策